

Willow Tree Waste Management Facility

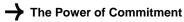
Landfill Expansion Masterplan

Liverpool Plains Shire Council

13 September 2021

The Power of Commitment

GHD Pty Ltd | ABN 39 008 488 373


Suite C Level 1, 307 Peel Street Tamworth, New South Wales 2340, Australia **T** +61 2 49799900 | **F** +61 2 49799900 | **E** tamworthmail@ghd.com | **ghd.com**

Document status

Status	Revision	Author	Reviewer		Approved for issue		
Code			Name	Signature	Name	Signature	Date
S4	0	S. Kentwell, A. Patapanian	C. Nivison- Smith	Ant	J. Roworth	John Kowood	13/09/2021
				1			
				/			

© GHD 2021

This document is and shall remain the property of GHD. The document may only be used for the purpose for which it was commissioned and in accordance with the Terms of Engagement for the commission. Unauthorised use of this document in any form whatsoever is prohibited.

Contents

1.	Intro	duction		1
	1.1	Backg	round	1
	1.2	Purpo	se	1
	1.3	Scope	e of works	1
	1.4	Limita	tions	1
2.	Site s	setting		3
	2.1	Site lo	ocation and surrounds	3
	2.2	Site hi	istory	3
	2.3	Topog	graphy and hydrology	4
	2.4		and geology	4
		2.4.1	Geological setting	4
		2.4.2	Soil landscape	5
	2.5	Hydro	geology	5
	2.6	Climat	te	5
3.	Maste	erplan in	puts	7
	3.1	Gener	ral	7
	3.2	Site su	uitability	7
	3.3	Surve	у	7
	3.4	Geote	chnical conditions	7
		3.4.1	General	7
		3.4.2		8
		3.4.3	Excavated material characteristics and re-use	9
	3.5		e types and quantities	10
	3.6	Future	e land use	11
4.	Facili	ity arrang	gement	12
	4.1	Functi	ional layout	12
	4.2	Facilit	y allocation	12
	4.3	Acces	S	12
5.	Land	fill cell de	esign basis	13
	5.1	Gener	-	13
	5.2	Cell ex	xtent	13
	5.3	Existir	ng landfilled areas	13
	5.4		xcavation and stockpiling	14
	5.5	Cell gi		14
	5.6	Liner p	-	14
		5.6.1	Basal liner	14
			Basal liner options	14
			Basal liner options assessment Basal liner recommendations	15 15
		5.6.2	Sidewall liner	15
	5.7		ndwater management	16
	5.8		ce water management	16
	5.9		ate management	16
	-		5	

		5.9.1	Overview	16
		5.9.2	Leachate pond liner profile	17
	5.10	Landfill	l gas management	17
	5.11	Cover r	material	17
	5.12	Final la	andform and staging	17
	5.13	Final ca	apping profile	17
		5.13.1	Capping options	17
		5.13.2	Capping options assessment	18
		5.13.3	Capping recommendations	19
	5.14	Access	8	19
6.	Safety	y in desig	ŋn	20
7.	Prelin	ninary lan	ndfill airspace estimates	21
	7.1	Genera	al	21
	7.2	Prelimi	inary estimates	21
8.	Prelin	ninary cos	est estimates	23
	8.1	Genera	al	23
	8.2	Cost es	stimates	23
9.	Prefe	rred optio	on and initial staging	25
10.	Suppl	ementary	y assessments and investigations	26
11.	Refer	ences		27

Table index

Table 2.1	Site information summary	3
Table 2.2	Climate statistics	5
Table 4.1	Landfill facilities basis summary	12
Table 5.1	Options for existing landfilled areas	13
Table 5.2	Proposed basal liner profiles (top to bottom)	15
Table 5.3	Comparative basal liner options assessment	15
Table 5.4	Proposed capping profiles (top to bottom)	18
Table 5.5	Comparative cap options assessment	18
Table 7.1	Preliminary landfill airspace estimates – former quarry area	21
Table 7.2	Preliminary landfill airspace estimates – undeveloped area	22
Table 8.1	Preliminary capital cost estimates – former quarry area	24
Table 8.2	Preliminary capital cost estimates – undeveloped area	24
Table 9.1	Preliminary capital cost estimate – initial stage in former quarry area	25

Figure index

Figure 2.1	Site location (source: Google Earth)	3
Figure 2.2	Geological setting	4
Figure 2.3	Climate statistics	6
Figure 3.1	Test pit locations (source: GHD (2021a))	8
Figure 3.2	Willow Tree Gravel Quarry highwall	9
Figure 3.3	Council waste generation, recycling and disposal forecast (FY12-FY27) (source:	
	MRA (2018))	11

Appendices

- Appendix A Concept Design Drawings
- Appendix B Preliminary Landfill Airspace and Cost Estimates
- Appendix C Willow Tree WMF Geotechnical Investigation for Landfill Expansion (GHD, 2020)

1. Introduction

1.1 Background

In 2018, Liverpool Plains Shire Council (Council) developed a 10-year strategy for the ongoing management of waste within their region (MRA, 2018). Landfilling forms an essential part of this strategy, along with the waste avoidance and reduction, increased recycling, and diversion of waste from landfill. The waste management strategy proposes to rationalise the landfilling operations across the region by establishing the Willow Tree Management Facility (WMF) (the site) as the primary landfill, servicing Council's Local Government Area (LGA) via an expansion of this existing landfill site with the existing lot boundary.

Council has engaged GHD Pty Ltd (GHD) to develop a masterplan for the site including a concept design for the landfill expansion.

1.2 Purpose

The purpose of this report is to document the site masterplan and concept design for the landfill expansion.

1.3 Scope of works

Specifically, the scope of works included:

- Review of site setting and masterplan inputs.
- Development of a facility arrangement and design basis for the landfill expansion, including relevant regulatory requirements and a review of options for cell geometry and lining/capping materials.
- Preliminary 3D modelling for the development of landfill airspace estimates for cell.
- Preliminary cost estimation for the landfill expansion.
- Identification of supplementary assessments and investigations required for the subsequent phases of the project.
- Provision of this report alongside preparation of concept design drawings to support preliminary cost estimates for the expansion.

1.4 Limitations

This report has been prepared by GHD for Liverpool Plains Shire Council and may only be used and relied on by Liverpool Plains Shire Council for the purpose agreed between GHD and Liverpool Plains Shire Council as set out in Section 1.2 of this report.

GHD otherwise disclaims responsibility to any person other than Liverpool Plains Shire Council arising in connection with this report. GHD also excludes implied warranties and conditions, to the extent legally permissible.

The services undertaken by GHD in connection with preparing this report were limited to those specifically detailed in the report and are subject to the scope limitations set out in the report.

The opinions, conclusions and any recommendations in this report are based on conditions encountered and information reviewed at the date of preparation of the report. GHD has no responsibility or obligation to update this report to account for events or changes occurring subsequent to the date that the report was prepared.

The opinions, conclusions and any recommendations in this report are based on assumptions made by GHD described throughout this report. GHD disclaims liability arising from any of the assumptions being incorrect.

The opinions, conclusions and any recommendations in this report are based on information obtained from, and testing undertaken at or in connection with, specific sample points. Site conditions at other parts of the site may be different from the site conditions found at the specific sample points.

Investigations undertaken in respect of this report are constrained by the particular site conditions, such as the location of buildings, services and vegetation. As a result, not all relevant site features and conditions may have been identified in this report.

Site conditions (including the presence of hazardous substances and/or site contamination) may change after the date of this report. GHD does not accept responsibility arising from, or in connection with, any change to the site conditions. GHD is also not responsible for updating this report if the site conditions change.

GHD has prepared this report on the basis of information provided by Liverpool Plains Shire Council and others who provided information to GHD (including Government authorities), which GHD has not independently verified or checked beyond the agreed scope of work. GHD does not accept liability in connection with such unverified information, including errors and omissions in the report which were caused by errors or omissions in that information.

GHD has prepared the preliminary cost estimate set out in Section 8 of this report ("Cost Estimate") using information reasonably available to the GHD employee(s) who prepared this report; and based on assumptions and judgments made by GHD and described throughout this report.

The Cost Estimate has been prepared for the purpose of supporting feasibility assessment of the landfill expansion and must not be used for any other purpose.

The Cost Estimate is a preliminary estimate only. Actual prices, costs and other variables may be different to those used to prepare the Cost Estimate and may change. Unless as otherwise specified in this report, no detailed quotation has been obtained for actions identified in this report. GHD does not represent, warrant or guarantee that the works can or will be undertaken at a cost which is the same or less than the Cost Estimate.

Where estimates of potential costs are provided with an indicated level of confidence, notwithstanding the conservatism of the level of confidence selected as the planning level, there remains a chance that the cost will be greater than the planning estimate, and any funding would not be adequate. The confidence level considered to be most appropriate for planning purposes will vary depending on the conservatism of the user and the nature of the project. The user should therefore select appropriate confidence levels to suit their particular risk profile.

2. Site setting

2.1 Site location and surrounds

A summary of key site location details is provided in Table 2.1. The site locality and surrounding lands is shown in Figure 2.1.

Table 2.1	Site information	summary
-----------	------------------	---------

Item	Details
Address	Merriwa Road, Willow Tree, NSW, 2339
Land title	Lot 213, DP 1173230
Site land owner	Liverpool Plains Shire Council
Land zoning	SP1: Special Activities RU1: Primary Production
Overview of site location and surrounds	The site is surrounded by rural land with the Willow Tree township located 2 km northeast of the site. A privately run gravel quarry (Willow Tree Gravel Quarry) is located adjacent to the landfill site.

Figure 2.1 Site location (source: Google Earth)

2.2 Site history

Limited information is available on the history of the site. Based on site observations and discussions with Council, it is understood that the northern portion of the site was previously used for quarrying. The southern end of this portion has since been utilised for landfilling. Various crushed rock stockpiles are still present from these previous quarrying activities.

The southern portion of the site is predominately undisturbed, with the exception of access roads established across this area.

2.3 Topography and hydrology

A roughly north-south trending ridge forms a central portion with an unsealed access track along it. The northern part of this ridge has been removed by quarrying such that the high point is now near the central western area of the site. The land slopes away from this high point in all directions.

The northern portion of the site has been modified by quarrying and landfilling whereas the southern portion is largely undisturbed. The northern portion generally drains towards a number of ponds that are central to this area and were likely formed during the quarrying activities. The southern and eastern portions sheet flow away in all directions from the high point, with an intermittent waterbody present in the southwestern corner of the site.

2.4 Soils and geology

2.4.1 Geological setting

Reference to the NSW Seamless Geology dataset (accessed via MinView) indicates the site is situated on lower Triassic age Banks Wall Sandstone [Tnrb] as shown in Figure 2.2.

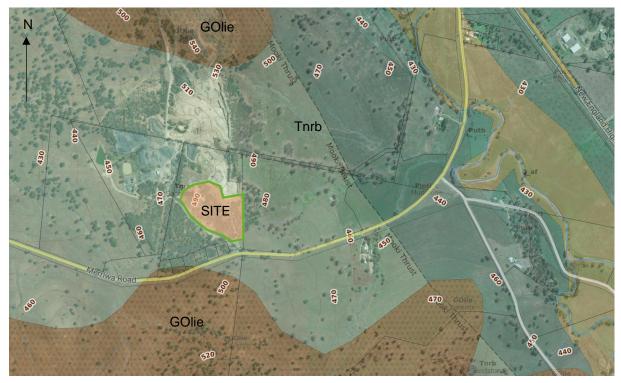


Figure 2.2 Geological setting

The superseded 1:250,000 scale Geological Series Sheet for Tamworth indicates that the site is situated on the Digby Conglomerate of the Narrabeen Group [Rrd].

As observed from bedrock outcrops on the site, this unit has bedding generally dipping toward a bearing of about 190° to 230° at 12° to 18° dip. The local lithology was observed to comprise conglomerate, pebbly sandstone and sandstone beds.

The Mooki thrust fault is located about 500 m to the north-east and dolerite capped hills, mapped as Liverpool East Basalt [GOlie], are about 1 km to the north of the site and south of Merriwa Road.

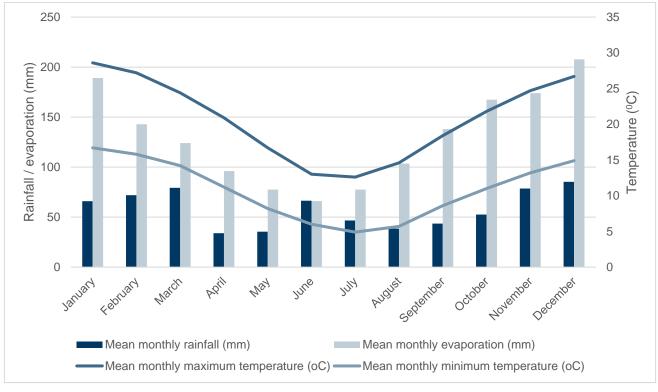
Willow Tree Gravel Quarry adjacent to the site quarries both the Liverpool East Basalt and Banks Wall Sandstone units to produce a variety of road and rail construction materials.

2.4.2 Soil landscape

Reference to the 1:100,000 scale Soil Landscapes of the Murrurundi map indicate that the site has a Ferrosol and Kandosol soil landscape. The soil landscape is characterised by undulating to rolling low hills with slopes ranging 5-15%. Slopes are typically 375-625 m long with elevation ranging from 400-460 m. Total relief is less than 50 m and a local relief of less than 30 m with minor to moderate erosion hazards. The typical soil profile consists of fine sandy loam to silt loam, overlying a loamy clay to clay.

2.5 Hydrogeology

Limited information is available on the hydrogeological conditions at the site. A review of nearby registered groundwater monitoring bores suggests groundwater levels significantly below the existing surface level.


2.6 Climate

Climate data for the site was obtained from the Bureau of Meteorology and is presented in Table 2.2 and Figure 2.3. Precipitation and temperature data was sourced from Murrurundi Gap AWS (Station no. 061392), located 11.8 km away from Willow Tree, NSW. Evaporation data was sourced from Lostock Dam (Station no. 061288), located 105 km away from the site.

	1	1	1	
Time period	Mean monthly rainfall (mm) (Murrurundi Gap AWS, no. 061392)	Mean monthly maximum temperature (°C) (Murrurundi Gap AWS, no. 061392)	Mean monthly minimum temperature (°C) (Murrurundi Gap AWS, no. 061392)	Mean monthly ¹ evaporation (mm) Lostock Dam, no. 061288)
January	65.9	28.6	16.7	189.1
February	71.9	27.2	15.8	142.8
March	79.3	24.4	14.2	124.0
April	33.9	20.9	11.2	96.0
Мау	35.4	16.7	8.2	77.5
June	66.4	13	6	66.0
July	46.6	12.6	4.9	77.5
August	38.5	14.6	5.7	103.5
September	43.5	18.4	8.6	138.0
October	52.6	21.8	11	167.4
November	78.6	24.7	13.2	174.0
December	85.3	26.7	14.9	207.7
Annual (total for rainfall/evaporation and average for temperature)	707.3	20.8	10.9	1,569.5

Table 2.2 Climate statistics

¹ Calculated by multiplying daily rainfall by the number of days in that month, 28 days used for February.

The data shown above indicates the following:

- Mean monthly maximum and minimum temperatures are lowest during winter months (June to August) and highest during the summer months (December to February).
- Mean monthly rainfall varies across the year with the lowest during autumn and spring (April-May and July-October) and highest during summer and early autumn months (November-March).
- Estimated monthly evaporation is lowest during the late autumn and early winter months (May-July) and highest during late spring and summer months (September-February).
- Estimated monthly evaporation exceeds mean monthly rainfall for all months except for June and estimated annual evaporation exceeds the estimated annual rainfall.

3. Masterplan inputs

3.1 General

A number of initial assessment and investigation works have been completed to inform the masterplan and these are summarised below.

3.2 Site suitability

An initial desktop review was completed by GHD to assess the suitability of the site for expansion of the landfill, with consideration to the principals and procedures outlined in the EIS Guideline – Landfilling (NSW Department of Urban Affairs and Planning², 1996). This is documented in GHD (2021) and the review concluded that the expansion of landfill operations at the site appears feasible with no severe constraints identified. However, a number of items were identified for further consideration in the next phases of the project. Where relevant, these have been considered as part of this masterplan.

3.3 Survey

Council provided a topographic survey of the works area, completed by Bath Steward Associates (Dwg. Ref. 20096), dated 14 May 2020. This survey has been relied upon for the masterplan and design works, and the associated preliminary cost estimate.

3.4 Geotechnical conditions

3.4.1 General

GHD completed an initial geotechnical investigation in the southern undisturbed areas to obtain a better understanding of the site geology and geotechnical conditions. The report is contained in Appendix C and findings relevant to the masterplan are summarised below. Test pit locations for this investigation are shown in Figure 3.1.

² Currently the NSW Department of Urban Affairs and Planning

Figure 3.1 Test pit locations (source: GHD (2021a))

3.4.2 Excavation conditions

The 13.5 tonne excavator and pendulum auger used in the field investigation met with practical refusal on numerous occasions. In TP02 and TP04 this was due to waste debris binding up around the auger. An excavator with general purpose bucket would have been able to excavate through this material.

In the remainder of conditions, practical refusal was due to very slow progress of the auger through less weathered and stronger conglomerate and sandstone. Where previous stripping of surficial weathered material had occurred such as at TP05, TP06 and TP16 refusal was reached at less than 0.3 m depth. In other locations, refusal was reached when rock strength increased below a shallow weathered profile.

Excavation with a small to medium sized tracked excavator and bucket is likely to meet with similar slow progress in these materials. The use of hydraulic hammers to increase excavation progress is not expected to be effective as the sandstone and conglomerate bedding is expected to be thick. Large excavators of at least 20 to 30 tonne with buckets and suitable teeth are expected to be more effective but progress could still be very slow in high strength materials that are generally expected below the limit of the test pit investigation.

The excavation method employed by Willow Tree Gravel in these same materials is blasting. Excavation of the former quarry also appears to have been by blasting.

Excavation for a landfill cell is expected to be well beyond the limit of the geotechnical investigation. However, a good indication of conditions below this is available from the former quarry and Willow Tree Gravel Quarry where blasting is used. The blasting plans and experience of Willow Tree Gravel in excavating these materials would provide a valuable guide to excavation of rock to create a landfill cell.

3.4.3 Excavated material characteristics and re-use

The characteristics of the material as excavated is a function of the excavation method. In the case of the field investigation, a pendulum auger with new tungsten carbide teeth that are designed to roll and hence 'self-sharpen'. The effect was generally to grind through the material and it was only in the more thinly bedded sandstone that pieces of rock were recovered. Point Load Index testing could only be undertaken on these samples.

Excavation with a bucket, ripper or by blasting would produce material with larger pieces of rock. This can be seen in the below photo from the Willow Tree Gravel Quarry (Figure 3.2).

To produce a similar material to that created by auger drilling, crushing of oversized material from ripping or blasting would be needed. For very low and low strength materials, use of a grid roller on thinly spread material is likely to be effective in reducing oversize proportions. However, the effectiveness of this technique should be confirmed with a field trial, particularly for breakup of medium strength rock which is expected to comprise a significant proportion of the excavated material.

Figure 3.2 Willow Tree Gravel Quarry highwall

Re-use functions of the excavated soil and rock for use in landfill operations will depend on how the material is excavated and blended. Based on the observed auger excavated material and products of Willow Tree Gravel from the same rock units the following material uses are expected to be achievable:

- Daily cover.
- Intermediate cover.
- Internal access roads and hardstands.

The use of site won material in landfill cell liners would be restricted to protection layers for geosynthetics or liner foundation material. The material is expected to be too permeable to provide the function of a clay liner by itself and require significant processing of the harder rock for use in any drainage layers.

For capping materials, the site won material could provide a useful component but by itself is expected to be too permeable to provide the function of a clay capping.

3.5 Waste types and quantities

Council's Waste Management Strategy (MRA, 2018) includes estimates for waste generation for the region, which have been used to inform this masterplan and are summarised in Figure 3.3.

In 2013/14, Council received approximately 5,000 tonnes of waste through its rural landfills, major landfills and transfer stations, of which 1,800 tonnes was recycled and the remainder sent to landfill for disposal.

Waste generation has been projected for Council using:

- The rate of population growth in Council.
- The rate of growth of consumption in the Extended Regulated Area³.

These projections estimate that waste generated in Council in Financial Year 2017 (1 July 2016 – 30 June 2017) was 5,751 tonnes per annum and will reach 9,427 tonnes per annum by FY27.

MRA (2018) noted limitations to this estimate, specifically the data for FY12 to FY14 (which comprises the basis of the projections):

- Was collected by visual inspection, incurring a large margin of error.
- Was measured at the three major landfills, and therefore is exclusive of the four rural landfills.

It was also noted that the impact of the NSW Government's Container Deposit Scheme (CDS) for drink containers was not included in this projection as the impacts are difficult to predict and are likely to lie within the margin of error for this analysis.

³ The extended Regulated Area (ERA) is comprised of the Hunter, Illawarra and Central Coast regions. While Council is not located within the ERA, the quality of waste and resource recovery data for Council required the use of the next best available regional data.

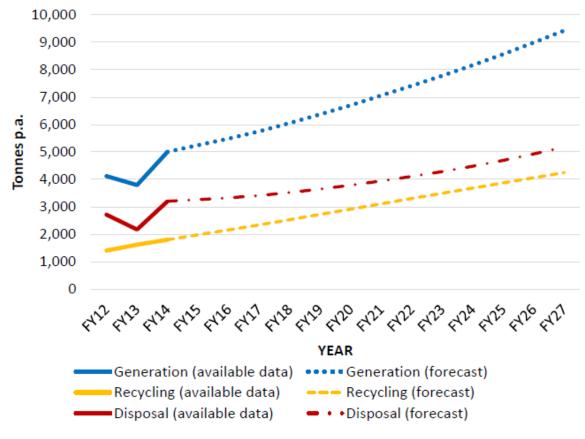


Figure 3.3 Council waste generation, recycling and disposal forecast (FY12-FY27) (source: MRA (2018))

3.6 Future land use

GHD understands that no specific future land use has been nominated at present. For the purposes of the concept design and masterplan, it is assumed that the future land use of the site will be restricted open space, with potential to retain infrastructure as part of a future waste transfer station operation.

4. Facility arrangement

4.1 Functional layout

The traffic and facility layout were conceptually arranged such that the domestic customers can conduct their activities in a single traffic loop, and commercial vehicles can conduct their activities with safe delineation. It allows site users to drive-by and stop at the individual drop-off facilities, and to park their vehicles in designated areas where required. A domestic vehicle traffic route has been adopted to maximise waste diversion and recycling prior to domestic access to waste drop-off areas for landfilling.

Provision has also been made for sufficient parking space for site personnel, with safe access to the office and amenities buildings.

4.2 Facility allocation

Table 4.1 summarises the landfill facilities that were allowed for as part of the masterplan alongside the new landfill cells and supporting infrastructure. These facilities are primarily to support the operational staff and domestic customers at the site. The area allocated for these facilities were based on previous experience with similar sized landfill sites and can be refined as part of the subsequent phases of the project, should the project be deemed feasible.

Facility	Summary of basis
Weighbridge	Located at site entrance, dual weighbridge preferred.
Site office and amenities	Located near site entrance including parking for 3-5 staff.
Resource recovery area	General area for resource recovery, may include a community recycling centre, and drop-off locations for domestic customers for tyres, concrete, steel, green waste, bulky wastes, etc.
Small vehicles transfer station	Area for waste disposal by domestic customers, for transfer by the site operator or collections contractor to the landfill cells.

Table 4.1	Landfill facilities	basis summary

4.3 Access

Access arrangements comprise of the following, in line with the proposed functional layout:

- Access from the Merriwa Road via formalisation of the existing access track running through the site for both domestic and commercial vehicles.
- Combined access to the weighbridge for domestic and commercial vehicles, followed by delineation of these vehicles to separate routes.
- Access road for domestic vehicles to the resource recovery areas (to promote resource recovery in the first instance), followed by access to the small vehicles transfer station for residual waste disposal, and then access to the site exit route.
- Access road for commercial vehicles directly to the landfill cells, and then access to the site exit route. Safety
 measures to be implemented where commercial vehicles re-join and share domestic vehicle routes.
 Additional access for commercial vehicles to the small vehicles transfer station for waste transfer to the landfill
 cells.

5. Landfill cell design basis

5.1 General

The concept design basis for the new landfill cells for the expansion is summarised below. Sketches for the preferred option (refer Section 9) are presented in Appendix A.

5.2 Cell extent

The cell extent will maximise the available site area whilst allowing sufficient area for site operational facilities, resource recovery areas and supporting infrastructure such as roads and ponds.

Two areas were considered for the new landfill cells:

- 1. Former quarry area: This comprises of the northern portion of the site which was previously used for quarrying activities. The cell extent in this area would be generally bounded by the quarry walls with sufficient area retained for access as well as surface water and leachate ponds.
- 2. Undeveloped area: This comprises of the undisturbed central to the southern portion of the site, bounded:
 - To the north and east by the former quarry area, the access track running through the site and the existing landfilled areas.
 - To the south and west by the access road to the Willow Tree Gravel Quarry.

An additional undeveloped area on the western side access road to the Willow Tree Gravel Quarry may potentially be used for landfilling, however was not considered given the overall airspace requirements for the project and potential issues with the intermittent waterbody present in this area.

5.3 Existing landfilled areas

Based on site observations and intrusive investigations undertaken as part of GHD (2021a) and the site survey area aerial, the existing landfilled areas include:

- An active landfilling mound central to the former quarry area.
- A linear mound of waste parallel to the western side of the central access track.
- Deeper buried waste encountered in test pits TP1, TP2, TP4, TP7 and TP17.

Given the central location of these existing landfill areas, they present a challenge to the future lined landfill cells to achieve a continuous lined area and maximise the potential landfilling airspace. A number of options were identified to address this issue as summarised in Table 5.1 These have been considered as part of the concept design and associated airspace and cost estimates described in this report. Further investigations will be required to refine the extent of the existing landfilled areas and subsequently determine the extent of the new landfill cells.

Option	Benefits/constraints
Offset the new landfill cells from the existing landfilled areas, capping and rehabilitating the existing landfilled areas separate to the landfill expansion.	 No additional measures required to address legacy landfilling issues as part of the expansion. Significantly reduction in landfill airspace due to offset.
Install a landfill liner over the existing landfilled areas (with additional measures to control differential settlement, i.e. piggyback lining).	 Maximise landfill airspace for the expansion. Costs associated with piggyback lining.
Progressively relocate existing landfilled waste into the lined cells constructed as part of the expansion.	Maximise landfill airspace for the expansion.Costs associated with waste relocation.

Table 5.1	Options	for existing	landfilled	areas

5.4 Cell excavation and stockpiling

For both areas considered for the new landfill cells, excavation will be limited to a minimum, primarily establish a suitable grading along the landfill base for construction and operation. This is due to the following:

- For the undeveloped area, based on the subsurface conditions encountered during GHD (2021a), excavation
 may be significantly hampered by the subsurface rock materials.
- The conditions are likely to be similar in the former quarry area and excavation issues potentially exacerbated by this quarrying (which would have retained harder rock material in place). However, it is noted that a fill platform appears to have been established in the northwestern corner of this area which may potentially be removed as part of the excavation works where possible and this should be investigated further as part of the subsequent phases of the project, if deemed feasible.

It is anticipated that the excavated materials will be segregated during cell construction for future reuse, including topsoil for capping, soil materials for cover and capping, and rock material for processing and reuse in access road construction. Given the limited excavation quantities expected, the excavated material will be progressively stockpiled in unused landfill areas, interim covered areas and/or capped areas as the landfilling progresses. It is assumed the same stockpiling process can be used for the cover material sourced from the Willow Tree Gravel Quarry and that it will be progressively provided to suit landfilling operations.

5.5 Cell grading

The base of the cells will be graded in accordance with the requirements of the NSW EPA Landfill Guidelines, 1% longitudinally along the cells, with 3% grades in the transverse direction. Sidewalls in the undeveloped area will be no greater than 1V:3H based on a review of geotechnical conditions (refer Section 3.4) and to provide a stable surface for lining. Sidewalls in the in the former quarry area will be steeper to align with previous quarrying works.

5.6 Liner profile

5.6.1 Basal liner

Basal liner options

Basal liner options were developed consistent with NSW EPA's Environmental Guidelines: Solid Waste Landfills (2016). These options include:

- A low permeability natural soil liner profile consisting of compacted clay overlain with a leachate collection layer – single sealing layer required based on expected waste quantities.
- A low permeability geosynthetic capping profile consisting of geosynthetic clay liner (GCL) and high density polyethylene (HDPE) geomembrane overlain with a leachate collection layer – composite sealing layer required where GCL is used as an alternative to clay.

Each of the proposed options is considered potentially suitable for meeting the design objectives of the works. The options are described in further detail in Table 5.2.

 Table 5.2
 Proposed basal liner profiles (top to bottom)

Layer	Option 1	Option 2	
Leachate collection	Separation geotextile	Separation geotextile	
layer	300 mm thick drainage aggregate with PE leachate collection pipework	300 mm thick drainage aggregate with PE leachate collection pipework	
	Separation geotextile	Protection geotextile	
Sealing layer	1,000 mm thick compacted clay	HDPE geomembrane	
		Geosynthetic clay liner	
Subgrade	Prepared existing surface with min. 200 mm thick surface ripped, moisture conditioned and re-compacted	Prepared existing surface with min. 200 mm thick surface ripped, moisture conditioned and re-compacted	

Basal liner options assessment

GHD conducted a comparative assessment of the proposed basal liner options (considering feedback from Council on material availability), summarised in Table 5.3.

 Table 5.3
 Comparative basal liner options assessment

Option	Comparative cost ⁴	NSW EPA compliance	Airspace consumption	Constructability	Material availability
1	\$70-120 / m ²	Yes	Relatively 1 m thicker than Option 2	 Earthen materials can be installed using typical civil construction methods Clay installation requires specific focus on moisture control 	 Suitable clay can be challenging to procure due to permeability requirements
2	\$80-100 / m ²	Yes	Relatively 1 m thinner than Option 1	 Geosynthetics installed by a specialist, GCL requires wet weather management during installation 	 Geosynthetics in stock or manufactured as required (6 weeks lead time)

Basal liner recommendations

Based on our assessment, Option 2 was adopted based on the following:

- Option 1 is highly dependent on clay procurement, and based on Council feedback on our local experience, this is likely to be challenging and result in a comparative cost on the high end of our estimate.
- Option 2 provides the additional benefit of generating additional airspace compared to Option 1, offset any
 potential additional costs.

5.6.2 Sidewall liner

For the undeveloped area, the sidewall liner profile options and recommendations were consistent with the basal liner options discussed in Section 5.6.1, with a drainage geocomposite used for the leachate collection layer due to the grading of these areas.

For the former quarry area, further inspections/investigations will be required to confirm the suitably of the current quarry faces for lining to be undertaken as part of the subsequent phases of the project, if deemed feasible. For the purposes of this phase of the project, a conservative lining approach has been assumed with an earthen layer installed to allow lining to occur. Future investigations may identify a steep wall lining approach can be adopted (if possible and cost effective).

⁴ Represent direct costs only and are not intended to represent likely project budgets or expected contract costs. The advice has been provided for comparison purposes only.

It is proposed that the sidewall liner be constructed using a 'shingle' approach, where the vertical component of the liner is incrementally constructed in parallel with waste placement lifts. Each adjoining vertical liner segment connects to the one below it to form a continuous hydraulic barrier. The shingle approach is repeated until the sidewall liner reaches the desired height.

The sidewall liner profile was developed generally consistent with NSW EPA's Environmental Guidelines: Solid Waste Landfills (2016), and consists of (from top to bottom):

- Sacrificial / Slip plane geotextile (if required)
- Protection geotextile
- HDPE geomembrane
- Min 2 m thick earthen berm offset from the existing rock face

Due to the steep nature of the sidewalls, it was proposed that a leachate collection layer is not required for the sidewall liner profile, to be justified as part of the detailed design. A similar approach has been recently approved at other quarry landfill sites in NSW.

5.7 Groundwater management

The need for groundwater management measures will be assessed as part of the subsequent phases of the project, if deemed feasible. For the concept design, it was understood that the base of the cell will be significantly above the groundwater table and as such no specific measures will be considered for groundwater management as part of the concept design.

5.8 Surface water management

Incoming clean surface water flowing from surrounding terrain will be diverted around the landfill expansion area via diversion drains/banks.

Where possible, rainfall falling onto the footprint of the landfill cell would be prevented from coming into contact with waste via the application of soil (or other inert) cover materials. Sediment laden water would be opportunistically collected and/or diverted to the existing pond for treatment.

A nominal allowance was made for a sediment pond based on high level staging of the landfill operations with reference to the Blue Book Volume 2B. The final pond size will be refined as part of the subsequent phases of the project, if deemed feasible.

5.9 Leachate management

5.9.1 Overview

Leachate collected in the landfill cells will be pumped to a new leachate pond. Based on the climatic data presented in Section 2.6, leachate disposal via evaporation from this pond is feasible and would be implemented. The need for emergency leachate disposal measures (such as irrigation and off-site tankering during or immediately after high rainfall events) will be assessed as part of the subsequent phases of the project, if deemed feasible.

The leachate pond was sized based on high level staging of the landfill operations with consideration to the default rainfall infiltration percentages provided in NSW EPA's Environmental Guidelines: Solid Waste Landfills (2016). The final pond size will be refined as part of the subsequent phases of the project, if deemed feasible.

5.9.2 Leachate pond liner profile

The leachate pond will be lined to a similar standard as the new landfill cells (refer Section 5.6). Given potential issues with ongoing confinement, it is recommended that a clay sealing layer is utilised, noting the potential supply issues with this material.

The proposed pond liner profile consists of (from top to bottom):

- 1000 mm thick compacted clay.
- Prepared existing surface with min. 200 mm thick surface ripped, moisture conditioned and re-compacted.

5.10 Landfill gas management

Landfill gas management will be addressed during operation of the cell and not specifically as part of the concept design of the cell which is industry practice.

5.11 Cover material

The limited excavation proposed for the new landfill cells will require cover material to be recovered from a separate source. Council has conducted initial discussions with the Willow Tree Gravel Quarry to utilise overburden material from their operations as cover material. It is assumed this process can provide suitable cover material for the life of the landfill.

As previously identified, a fill platform appears to have been established in the northwestern corner of the former quarry area which may potentially be removed as part of the excavation works and reused as cover material. This should be investigated further as part of the subsequent phases of the project, if deemed feasible.

5.12 Final landform and staging

The final landform will be assumed to contain maximum 1V:5H slopes with a minimum of 5% batters. As there is no specified future land use at present (refer Section 3.6), the design sought to maximise landfill capacity across the expansion area.

Staging will be subject to ongoing access, leachate management and surface water management. In general, each landfill cell in the expansion area was designed to last approximately 5 years.

5.13 Final capping profile

5.13.1 Capping options

Capping options were developed consistent with NSW EPA's Environmental Guidelines: Solid Waste Landfills (2016). These options include:

- A low permeability natural soil capping profile consisting of compacted clay overlain with subsoil/topsoil and revegetation.
- A low permeability geosynthetic capping profile consisting of linear low-density polyethylene (LLDPE) geomembrane or coated GCL overlain with subsoil/topsoil and revegetation.
- An evapotranspiration (ET) capping profile consisting of suitable subsoil overlain with topsoil and revegetation.

Each of the proposed options is considered potentially suitable for meeting the design objectives of the works. The options are described in further detail in Table 5.4.

 Table 5.4
 Proposed capping profiles (top to bottom)

Layer	Option 1	Option 2	Option 3
Revegetation layer	Shallow rooted grass species	Shallow rooted grass species	To be confirmed based on
	200 mm thick topsoil layer	200 mm thick topsoil layer	phytocap modelling, however likely to comprise:
	800 mm thick subsoil layer	800 mm thick subsoil layer	 Design specific shrubs and planting 200 mm thick to pail lower
			 200 mm thick topsoil layer 1,300 mm thick subsoil layer
			(min.)
Subsoil drainage layer / capillary break layer	-	Drainage geocomposite	Drainage geocomposite (if required)
Sealing layer	600 mm thick compacted clay	LLDPE geomembrane	-
Gas drainage layer	To be confirmed based on landfill gas modelling	To be confirmed based on landfill gas modelling	To be confirmed based on landfill gas modelling
Seal bearing layer	300 mm thick existing interim cover layer	300 mm thick existing interim cover layer	300 mm thick existing interim cover layer

5.13.2 Capping options assessment

GHD conducted a comparative assessment of the proposed basal liner options (considering feedback from Council on material availability), summarised in Table 5.5.

Table 5.5	Comparative cap options assessment

ID	Comparative cost ⁵	NSW EPA compliance	Infiltration rates / leachate generation	Constructability	Material availability		
1	\$50-90 / m ²	Yes	Low (5% of average annual rainfall)	 Earthen materials can be installed using typical civil construction methods Clay installation requires specific focus on moisture control 	 Earthen materials will need to be imported Suitable clay can be challenging to procure due to permeability requirements 		
2	\$60-80 / m ²	Likely yes, however it will require justification for alternative sealing layer	Very low (<1% of average annual rainfall)	 Earthen materials can be installed using typical civil construction methods Geosynthetics installed by a specialist, usually not significantly impacted by rain 	 Earthen materials will need to be imported Geosynthetics in stock or manufactured as required (6 weeks lead time) 		
3	\$40-80 / m ² (note: considers whether capillary break layer may or may not be required)	Potentially yes, however further modelling and justification required (including a field trial)	Low (5% of average annual rainfall)	 Earthen materials can be installed using typical civil construction methods, with a greater focus on minimising compaction Specialist landscaping contractors may be required for installation and maintenance of revegetation Geosynthetics (if required) installed by a specialist, usually not significantly impacted by rain 	 Earthen materials will need to be imported Assessment of likely available materials will need to be considered for site specific modelling prior to procurement Geosynthetics in stock or manufactured as required (6 weeks lead time) 		

⁵ Represent direct costs only and are not intended to represent likely project budgets or expected contract costs. The advice has been provided for comparison purposes only.

5.13.3 Capping recommendations

Based on our assessment, Option 2 or 3 was adopted based on the following:

- Option 1 is highly dependent on clay procurement, and based on Council feedback on our local experience, this is likely to be challenging and result in a comparative cost on the high end of our estimate.
- Option 2 provides the highest comparative confidence for material procurement and supply and will also
 provide the most significant reduction in rainfall infiltration and leachate generation. Based on our previous
 experience, it is very likely to be approved as an alternative capping profile by the NSW EPA.
- Option 3 requires site-specific modelling and a field trial that can take 3-5 years. This option is potentially favourable but contingent on time available for trialling and suitable material being available.

5.14 Access

Access arrangements comprises the following:

- Formalisation of the existing access track running through the site for commercial vehicle access to the landfill cells.
- Access tracks running around the perimeter of the landfill cells, sediment pond and leachate pond.
- Temporary access during landfilling into each landfill cell as they progress.

6. Safety in design

As part of the concept design, safety in design risk identification was undertaken, with a comprehensive assessment to be undertaken as part of the future stages of the project, if deemed feasible.

The risk identification process indicated the following potential safety issues:

- Rockfall from quarry faces.
- Construction on steep slopes, including ongoing stability and working from heights.
- Leachate generation/exposure.
- Landfill gas generation/exposure.
- Noise and dust generation/exposure.
- Placement and compaction of materials on batter slopes.
- Movement of construction machinery.

7. Preliminary landfill airspace estimates

7.1 General

Landfill airspace estimates were completed with respect to the various design options above, to support the preliminary cost estimates and decision making for the feasibility of the landfill expansion.

Specifically, the landfill airspace estimates are based upon:

- The options for new landfill cell areas presented in Section 5.2.
- The options for managing existing landfilled areas presented in Section 5.3.
- The preferred basal liner and sidewall liner options presented in Section 5.6.
- The preferred capping profile options presented in Section 5.13.

Landfill life calculations were based on the following assumptions:

- Waste disposal estimates described in MRA (2018) and summarised in Section 3.5, assuming a 2022 start date.
- A landfill compaction rate of 0.8 t/m³ is achieved.

The estimates do not include additional airspace that may be generated via removal of the fill platform in the former quarry area, as discussed in Section 5.4.

7.2 Preliminary estimates

Preliminary landfill airspace estimates and landfilling life estimates are provided in Appendix B and summarised in Table 7.1 and Table 7.2.

Based on the preliminary estimates:

- Offsetting from the existing landfilled areas results in a reduction of landfilling airspace for both areas, however it is significant for the former quarry area given the central location of this waste which compromises the final landform arrangement.
- The former quarry area produces significantly more airspace that the undeveloped area due to the former quarrying providing additional depth for landfilling.

Item	Option					
	Offset from existing landfilled areas	Piggyback liner over existing landfilled areas	Relocate existing landfilled areas			
Total void (m ³)	175,000	325,000	325,000			
Liner volume (m ³)	20,900	38,200	33,200			
Capping volume (m ³)	30,000	35,000	35,000			
Landfill airspace (m ³)	124,100	251,800	256,800			
Landfilling life (yrs) (with annual growth)	19	32	32			

 Table 7.1
 Preliminary landfill airspace estimates – former quarry area

Table 7.2 Preliminary landfill airspace estimates – undeveloped area

ltem	Option						
	Offset from existing landfilled areas						
Total void (m ³)	80,000	100,000	100,000				
Liner volume (m ³)	4,500	8,500	6,000				
Capping volume (m ³)	20,000	25,000	25,000				
Landfill airspace (m ³)	55,500	66,500	69,000				
Landfilling life (yrs) (with annual growth)	10	11	12				

8. Preliminary cost estimates

8.1 General

Preliminary capital cost estimates were prepared for the landfill expansion options outlined in Section 7, for the purposes of supporting feasibility assessment of the proposed landfill expansion.

Specifically, the landfill airspace estimates are based upon:

- The basis of the landfill airspace estimates described in Section 7.
- Assumed quantity of waste to be relocated (if required).
- Assumed cost for procurement of cover material, assuming it is primarily sourced from Willow Tree Gravel Quarry at a competitive rate.
- Only very limited excavation will be required where possible to establish a suitable grading along the landfill base for construction and operation (subject to the outcomes of additional site investigations).
- The quarry sidewalls will not require any significant improvement works as part of the sidewall liner installation (subject to the outcomes of additional site investigations).
- Nominal allowances for supporting landfill facilities (including weighbridge, site office and amenities, resource recovery area, and small vehicles transfer station) informed by the landfilled waste projections in Council's Waste Management Strategy (MRA, 2018).
- Council will undertake any construction supervision (e.g. superintendency) using existing Council staff or via a separate budget.
- Construction quality assurance has been allowed for specific landfill cell infrastructure (cell lining and leachate management systems).

The estimates exclude:

- Any additional airspace that may be generated via removal of the fill platform in the former quarry area, as discussed in Section 5.4.
- Operational costs, including but not limited to:
 - General landfill operation (including staff, plant and equipment).
 - Purchase and application of cover materials.
 - Management and maintenance of environmental management infrastructure (including sediment ponds, leachate ponds, etc.).
 - Ongoing environmental monitoring and reporting.
- Any costs associated with the existing landfilled areas (including capping and/or relocation).

8.2 Cost estimates

The preliminary capital cost estimates are provided in Appendix B and summarised in Table 8.1 and Table 8.2. Note these estimates consider the cost of utilising the entire new landfill cell areas, and Council may limit overall area used based on airspace requirements and budget.

Based on the preliminary estimates:

- In general, relocation of the existing landfilled areas appears to be the most cost effective option for both areas when considering cost per airspace generated due to the significant airspace lost through offsetting and the high cost of piggyback lining.
- The former quarry area is significantly more cost effective than the undeveloped area when considering cost per airspace generated due to the former quarrying providing additional depth for landfilling.

Table 8.1 Preliminary capital cost estimates – former quarry area

Item	Option					
	Offset from existing landfilled areas	Piggyback liner over existing landfilled areas	Relocate existing landfilled areas			
Preliminary capital cost estimate (ex GST)	\$8,250,000.00	\$10,170,000.00	\$10,330,000.00			
Capital cost vs. landfill airspace generated (ex GST)	\$66/m ³	\$40/m ³	\$40/m ³			

Table 8.2 Preliminary capital cost estimates – undeveloped area

ltem	Option					
	Offset from existing landfilled areas	Piggyback liner over existing landfilled areas	Relocate existing landfilled areas			
Preliminary capital cost estimate (ex GST)	\$5,950,000.00	\$7,100,000.00	\$7,210,000.00			
Capital cost vs. landfill airspace generated (ex GST)	\$107/m ³	\$107/m ³	\$104/m ³			

9. Preferred option and initial staging

Based on the preliminary landfill airspace estimates outlined in Section 7 and the preliminary cost estimates outlined in Section 8, development of new landfill cells in the former quarry area was deemed as the preferred option, with existing waste in this area either relocated or lined over to maximise landfill airspace.

A preliminary capital cost estimate was prepared for the initial stage of this preferred option to establish an initial landfill cell, as summarised in Table 9.1. The estimate was developed using the same basis as described in Section 8.1, with the following additions:

- The initial landfill cell would be located in the former quarry area and initially offset from the existing landfilled waste areas.
- The construction works encompass initial landfill cell construction to provide 10 years of landfilling life for the site, based on landfilled waste projections in Council's Waste Management Strategy (MRA, 2018).
- The construction works encompass bulk earthworks for the entire initial landfill cell area, with two stages of lining works to provide two 5-year landfill cell stages.
- The construction works include supporting infrastructure as described in GHD (2021), with relevant reductions in magnitude based on the initial landfill cell size.
- The construction works do not include final capping works, assuming this will be covered as part of future works.

ID	Item	Cost estimate (ex GST)
01	Site investigations and updates to concept design	\$150,000
02	Environmental assessment and planning approval	\$130,000
03	Detailed design (including construction phase support)	\$100,000
04	Bulk earthworks	\$200,000
05	Cell lining and leachate collection system	\$1,600,000
06	Supporting landfill infrastructure (including surface water management, leachate management, landfill gas management and access)	\$500,000
07	Supporting landfill facilities (including weighbridge, site office and amenities, resource recovery area, and small vehicles transfer station)	\$400,000
	Total	\$3,080,000

 Table 9.1
 Preliminary capital cost estimate – initial stage in former quarry area

10. Supplementary assessments and investigations

The masterplan provides a basis for the feasibility assessment for the new landfill cell. The masterplan outlines a number of items that should be considered when assessing the feasibility of this project, including a number of supplementary assessments and investigations that should be considered in the next phases of the project.

The cost and potential outcomes of these assessments and investigations should be factored into the feasibility assessment and progressed as part of the planning approval and detailed design phases if the project is deemed feasible. These include:

- Geotechnical assessment of quarry walls in the former quarry area to inform sidewall liner strategy in this area.
- Geotechnical assessment of the fill platform in the former quarry area to determine if it should be removed or retained, and potential reuse of this material for cover and capping.
- Site investigation to refine quantities of existing landfilled waste (such as via geophysical survey) to inform selection of strategy to address this issue as part of cell construction.
- Procurement discussions and cost confirmation for cover material supply from Willow Tree Gravel Quarry.

11. References

GHD (2021). Willow Tree Waste Management Facility – Review of Site Suitability for Landfill Expansion.

GHD (2021a) Willow Tree Waste Management Facility - Geotechnical Investigation for Landfill Expansion.

Landcom. (2004). Managing Urban Stormwater: Soils and Construction.

MRA Consulting Group (2018). Waste Management Strategy.

NSW Department of Environment and Climate Change (2008). Managing Urban Stormwater, Soils and Construction, Volume 2B Waste Landfills.

NSW EPA (2016). Environmental Guidelines: Solid Waste Landfills.

Appendices

Appendix A Concept Design Drawings

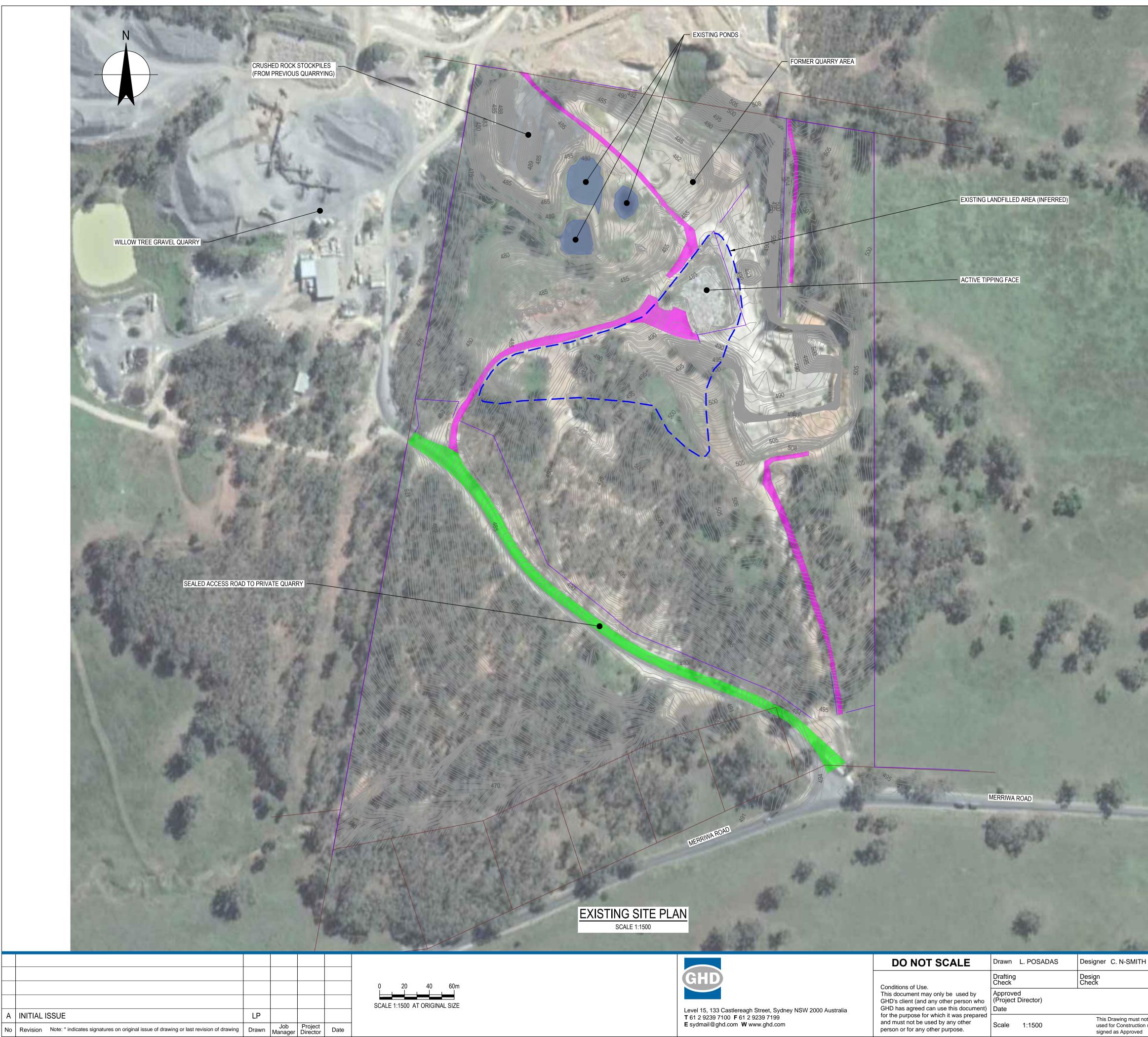
LIVERPOOL PLAINS SHIRE COUNCIL WILLOW TREE WASTE MANAGEMENT FACILITY LANDFILL EXTENSION CONCEPT DESIGN 12534581

LOCALITY PLAN SCALE NTS

A	INITIAL ISSUE	LP				
No	Revision Note: * indicates signatures on original issue of drawing or last revision of drawing	Drawn	Job Manager	Project Director	Date	
Plot	Date: 30 July 2021 - 12:46 PM Plotted by: Laurence Gae Posadas	Ca	d File No:	\\ghdnet\gh	d\PH\Cebu\l	Projects\21\12534581\CADD\Drawings\12534581-C001.dwg

DRAWING LIST

DRG No. 12534581-C001 12534581-C002 12534581-C003 12534581-C004 12534581-C005 12534581-C006


DRAWING TITLE **EXISTING SITE PLAN** CELL ARRANGEMENT PLAN **FINAL LANDFORM PLAN** CONCEPT STAGING PLAN TYPICAL SECTIONS AND DETAILS

	DO NOT SCALE	Drawn L. POSADAS	Designer C. N-SMITH
GHD	Conditions of Use.	Drafting Check	Design Check
Level 15, 133 Castlereagh Street, Sydney NSW 2000 Australia	This document may only be used by GHD's client (and any other person who GHD has agreed can use this document)	Approved (Project Director) Date	
T 61 2 9239 7100 F 61 2 9239 7199 E sydmail@ghd.com W www.ghd.com	for the purpose for which it was prepared and must not be used by any other person or for any other purpose.	Scale NOT TO SCALE	This Drawing must not be used for Construction unless signed as Approved

COVER SHEET, LOCALITY PLAN AND DRAWING LIST

PRELIMINARY

LIVERPOOL PLAINS SHIRE COUNCIL Project WILLOW TREE WASTE MANAGEMENT FACILITY Title LANDFILL EXTENSION CONCEPT DESIGN COVER SHEET, LOCALITY PLAN AND DRAWING LIST A1 Drawing No: 12534581-C001 Rev: A

Plot Date: 30 July 2021 - 12:46 PM

Plotted by: Laurence Gae Posadas

Cad File No: \\ghdnet\ghd\PH\Cebu\Projects\21\12534581\CADD\Drawings\12534581-C002.dwg

GH	D

DO NOT SCALE	Drawn L. POSADAS	Designer C. N-SMITH
Conditions of Use.	Drafting Design Check Check	
This document may only be used by GHD's client (and any other person who GHD has agreed can use this document)	Approved (Project Director) Date	
for the purpose for which it was prepared and must not be used by any other person or for any other purpose.	st not be used by any other Scale 1:1500 Used for Con	This Drawing must not be used for Construction un signed as Approved

LEGEND

 500	

EXISTING CONTOURS m A.H.D

CADASTRE

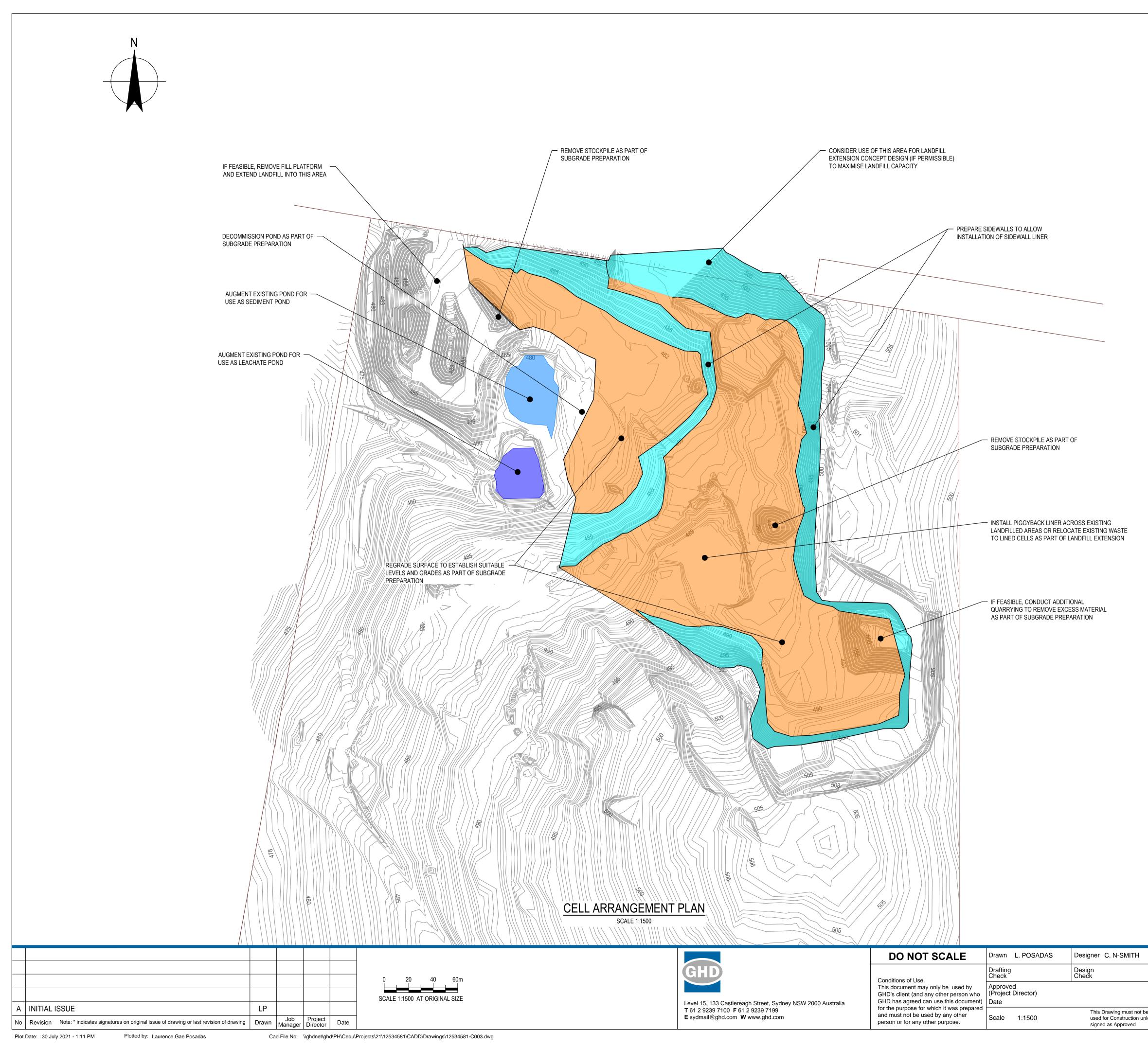
FENCE LINE

SEALED ROAD

UNSEALED ROAD

EXISTING PONDS

NOTES:


- CONTOURS AND CADASTRE TAKEN FROM BATH STEWART ASSOCIATES SURVEY DATED 14/05/20. REF. 20096.
- INFERRED WASTE FOOTPRINT BASED ON SITE AERIAL, SITE INSPECTIONS AND GEOTECHNICAL INVESTIGATION (GHD, 2020).
 ALL LOCATIONS ARE APPROXIMATE.

PRELIMINARY

Client LIVERPOOL PLAINS SHIRE COUNCIL Project WILLOW TREE WASTE MANAGEMENT FACILITY Title LANDFILL EXTENSION CONCEPT DESIGN EXISTING SITE PLAN

Original Size In unless A1 Drawing No: 12534581-C002

Rev: A

LEGEND

500	

- EXISTING CONTOURS m A.H.D
- CADASTRE
- BASAL LINER
- SIDEWALL LINER
- SURFACE WATER POND
- LEACHATE POND

NOTES:

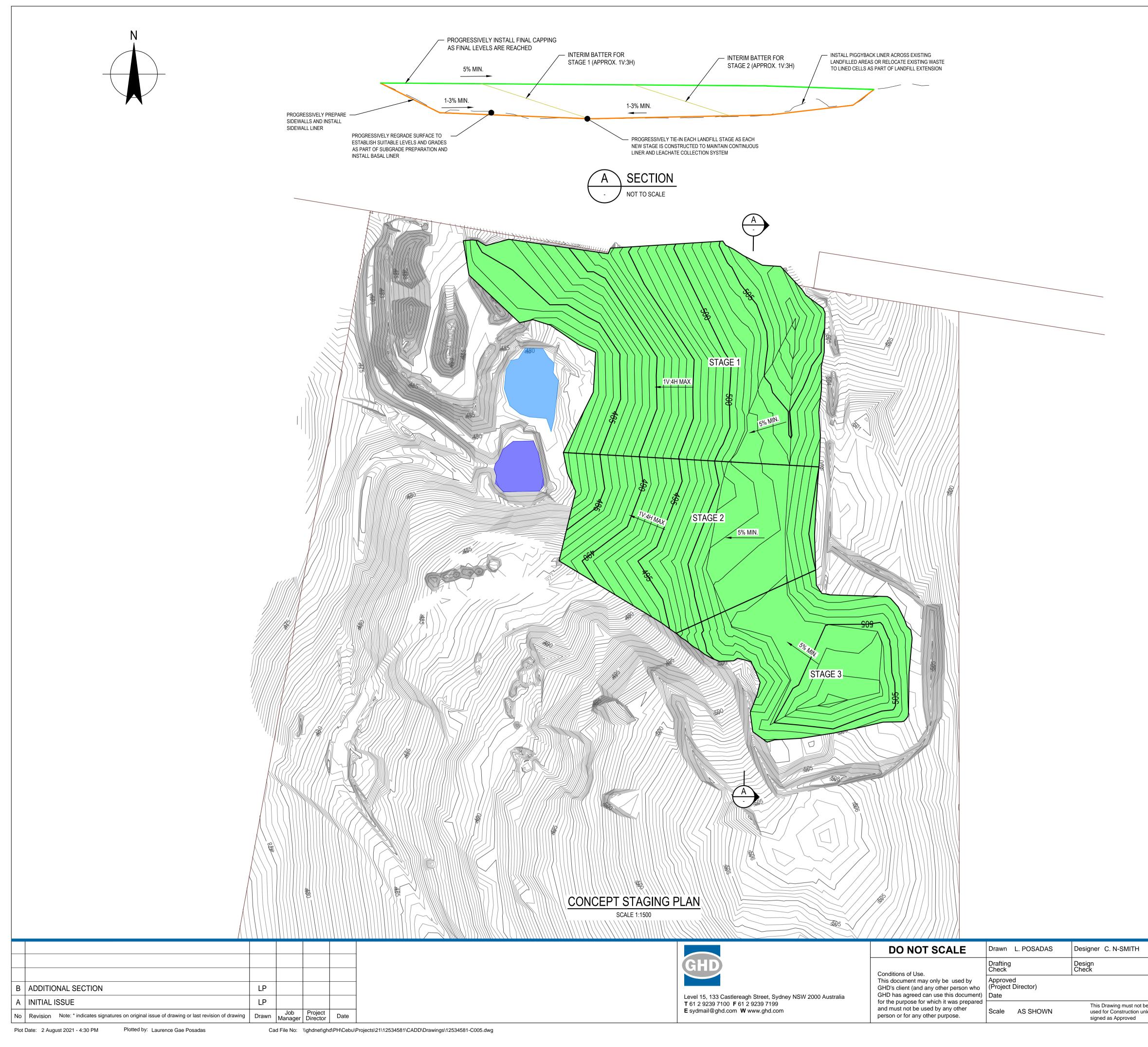
- SURFACE WATER DIVERSION MEASURES AROUND LANDFILL CELL NOT SHOWN, TO BE CONFIRMED IN DETAILED DESIGN.
- FINAL EXTENT OF LINER AREAS AND GEOMETRY TO BE CONFIRMED IN DETAILED DESIGN BASED ON FINAL LANDFORM, ROCKWALL STABILITY AND LINER PROFILES.
- 3. ALL LOCATIONS ARE APPROXIMATE.

PRELIMINARY

			_ PLAINS SHIRE COUNCIL REE WASTE MANAGEMENT FA	CILITY
	Title		EXTENSION CONCEPT DESIGN	
be inless	Original Size	Drawing No:	12534581-C003	Rev: A

	DO NOT SCALE	Drawn L. POSADAS	Designer C. N-SMITH
ralia	Conditions of Use.	Drafting Check	Design Check
	This document may only be used by GHD's client (and any other person who GHD has agreed can use this document) for the purpose for which it was prepared and must not be used by any other person or for any other purpose.	Approved (Project Director) Date	
		Scale 1:1500	This Drawing must not be used for Construction unle signed as Approved

<u>LEGEND</u>


500	EXISTING CONTOURS m A.H.D			
500	FINAL LANDFORM DESIGN CONTOURS			
	CADASTRE			
	SURFACE WATER POND			
	LEACHATE POND			

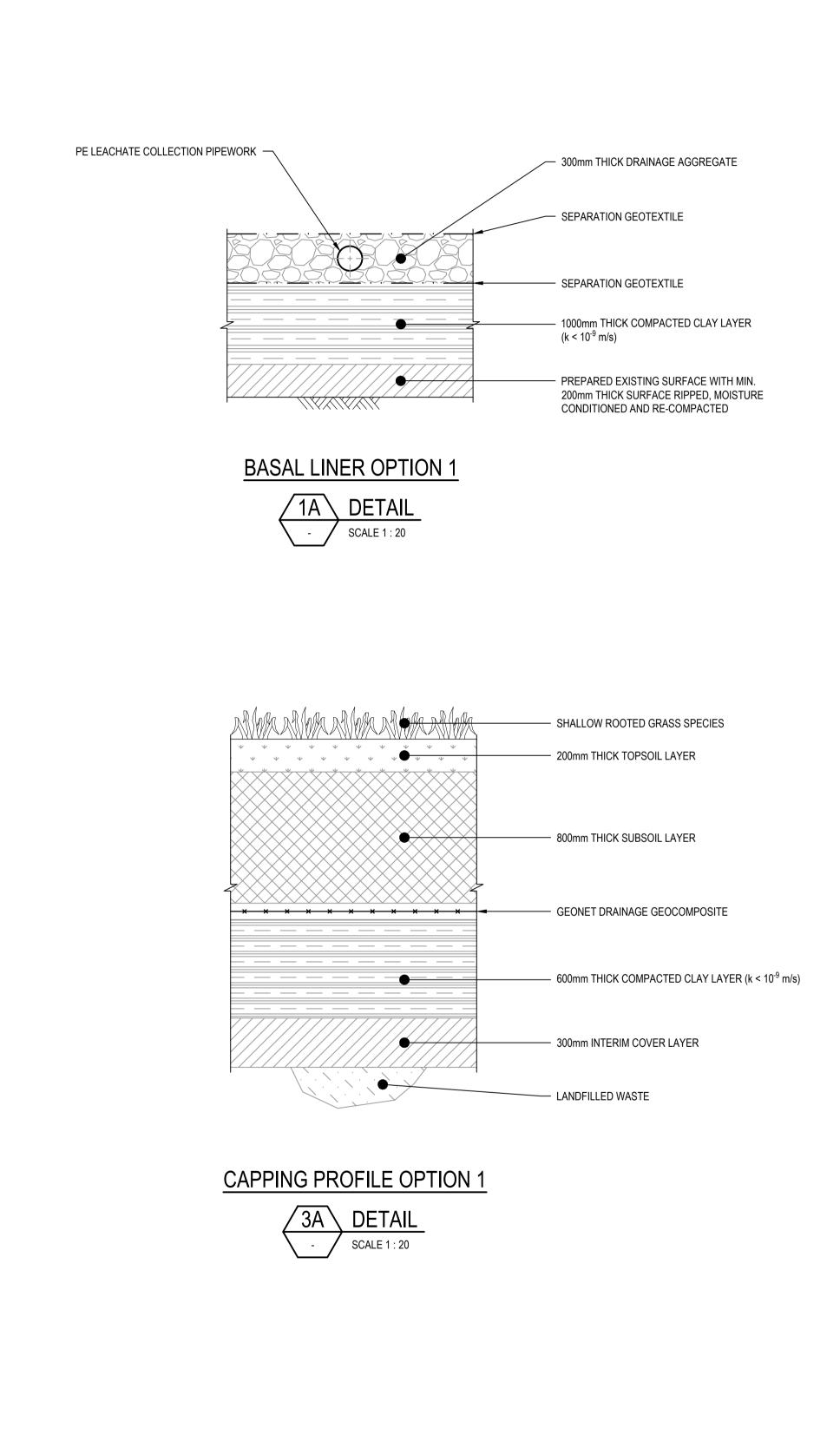
NOTES:

- SURFACE WATER DIVERSION MEASURES AROUND LANDFORM AND COLLECTION MEASURES ON LANDFORM SURFACE NOT SHOWN, TO BE CONFIRMED IN DETAILED DESIGN.
 ALL LOCATIONS ARE APPROXIMATE.

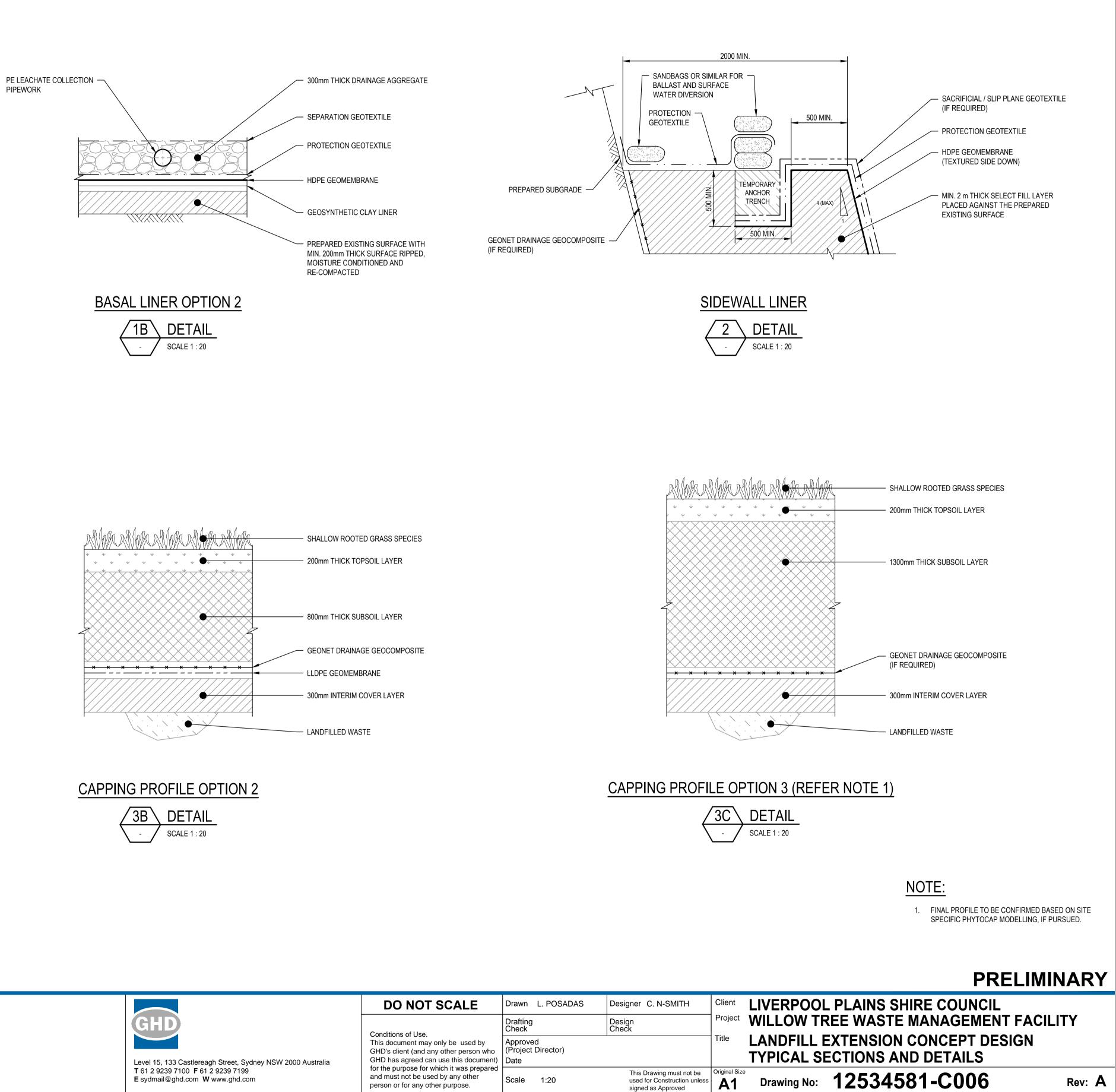
PRELIMINARY

	Client	LIVERPOOL	PLAINS SHIRE COUNCIL	
	Project	WILLOW TF	REE WASTE MANAGEMENT FA	CILITY
	Title	LANDFILL E	EXTENSION CONCEPT DESIGN	
		FINAL LAN	DFORM PLAN	
be unless	Original Size	Drawing No:	12534581-C004	Rev: A

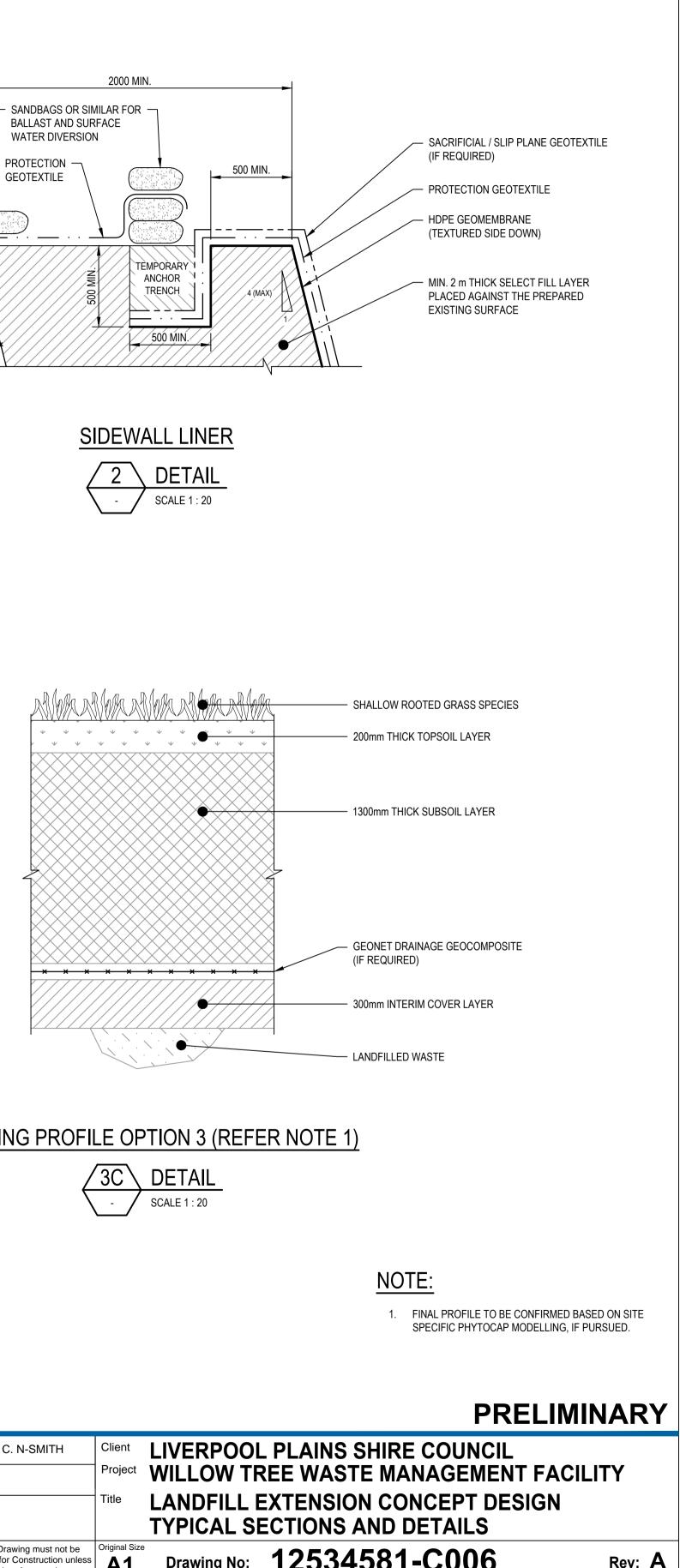
<u>LEGEND</u>


500	EXISTING CONTOURS m A.H.D			
	FINAL LANDFORM DESIGN CONTOURS			
	CADASTRE			
	SURFACE WATER POND			
	LEACHATE POND			

NOTES:


- SURFACE WATER DIVERSION MEASURES AROUND LANDFORM AND COLLECTION MEASURES ON LANDFORM SURFACE NOT SHOWN, TO BE CONFIRMED IN DETAILED DESIGN.
- 2. INTERIM WASTE BATTERS TO BE ESTABLISHED AT 1V:3H AT STAGE
- INTERFACE LOCATIONS. 3. ALL LOCATIONS ARE APPROXIMATE.

PRELIMINARY


			_ PLAINS SHIRE COUNCIL REE WASTE MANAGEMENT F/	ACILITY
	Title		EXTENSION CONCEPT DESIGI STAGING PLAN	N
be unless	Original Size	Drawing No:	12534581-C005	Rev: B

						0 200 400 600 800 1000mm	
						SCALE 1:20 AT ORIGINAL SIZE	
А	INITIAL ISSUE	LP					
No	Revision Note: * indicates signatures on original issue of drawing or last revision of drawing	Drawn	Job Manager	Project Director	Date		
Plot	Plotted by: Laurence Gae Posadas Cad File No: \\ghdnet\ghd\PH\Cebu\Projects\21\12534581\CADD\Drawings\12534581-C006.dwg						

AND	- SHALLOW ROOTED GRASS SPECIES
· · · · · · · · · · · · · · · · · · ·	- 200mm THICK TOPSOIL LAYER
	- 800mm THICK SUBSOIL LAYER
	- GEONET DRAINAGE GEOCOMPOSITE
	- LLDPE GEOMEMBRANE
	- 300mm INTERIM COVER LAYER
	- LANDFILLED WASTE

	DO NOT SCALE	Drawn L. POSADAS	Designer C. N-SMITH
GHD	Conditions of Use. This document may only be used by GHD's client (and any other person who	Drafting Check	Design Check
Level 15, 133 Castlereagh Street, Sydney NSW 2000 Australia		Approved (Project Director) Date	
T 61 2 9239 7100 F 61 2 9239 7199 E sydmail@ghd.com W www.ghd.com		Scale 1:20	This Drawing must not be used for Construction unle signed as Approved

Appendix B Preliminary Landfill Airspace and Cost Estimates

Preliminary Landfill Airspace Estimates

Client: Liverpool Plains Shire CouncilProject Number:12434581Project: Willow Tree WMF - Landfill ExpansionPrepared by:S KentwellSubject: Preliminary Landfill Airspace EstimatesChecked by:C Nivison-Smith

Description	Quantity	Unit	Reference and notes
UNDEVELOPED AREA - OFFSET			
N			
Void space	80,000	m3	Estimate
	4 500		
Liner volume	4,500	m3 m3	
Capping volume	20,000	113	
Landfilling airspace	55,500	m3	
Cover material required	8,325		15% usage rate
	0,020		
UNDEVELOPED AREA - PIGGYBACK			
Void space	100,000	m3	Estimate
Liner volume	8,500	m3	
Capping volume	25,000	m3	
Landfilling airspace	66,500	m3	
Cover material required	9,975	m3	15% usage rate
UNDEVELOPED AREA - RELOCATE			
	400.000		
Void space	100,000	m3	Estimate
Liner volume	6,000	m3	
Capping volume	25,000	m3	
	20,000		
Landfilling airspace	69,000	m3	
Cover material required	10,350		15% usage rate
	-,		
FORMER QUARRY AREA - OFFSET			
Void space	175,000	m3	Estimate
Liner volume	20,900		
Capping volume	30,000	m3	
Landfilling airspace	124,100		
Cover material required	18,615	m3	15% usage rate
FORMER QUARRY AREA - PIGGYBACK			
Void space	325,000	m3	Estimate
I void space	525,000		
Liner volume	38,200		

Preliminary Landfill Airspace Estimates

Client: Liverpool Plains Shire Council		Project Number:		Revision: B
-	: Willow Tree WMF - Landfill Expansion	Prepared by:		Date of issue: 13-Sep-21
Subject	: Preliminary Landfill Airspace Estimates	Checked by:	C Nivison-Smith	
	Capping volume	35,000	m3	
	Landfilling airspace	251,800	m3	
	Cover material required	37,770	m3	15% usage rate
	FORMER QUARRY AREA - RELOCATE			
	Void space	325,000	m3	Estimate
	Liner volume	33,200	m3	
	Capping volume	35,000	m3	
	Landfilling airspace	256,800	m3	
	Cover material required	38,520	m3	15% usage rate

Client: Liverpool Plains Shire Council Project: Willow Tree WMF - Landfill Expansion Subject: Preliminary Capital Cost Estimate - All Items Project Number:12434581Prepared by:S KentwellChecked by:C Nivison-Smith

ID	Description	Quantity	Unit	Rate (\$/unit)	Total (\$)	Reference and notes
	PRELIMINARIES					
	Design and planning approvals				\$380,000.00	Initial
	Detailed design	1	item	\$100,000.00	\$100,000.00	Estimate
	Site investigations	1	item	\$150,000.00	\$150,000.00	
	Planning approval	1	item	\$130,000.00	\$130,000.00	
	· · · · · · · · · · · · · · · · · · ·				+ ,	
	CONSTRUCTION WORKS					
_						
	UNDEVELOPED AREA - OFFSET				\$4,165,775.00	
					<i>Q</i> -1,100,110100	
	Bulk earthworks				\$391,000.00	Staged
	Clearing and grubbing	20,000	m2	\$2.00	\$40,000.00	-
	Bulk earthworks	20,000		\$15.00	\$300,000.00	
	Indirects - Superintendent (0%)	20,000	item	φ13.00	. ,	Assume Council uses internal staff
		1				Minimal for bulk earthworks
	Indirects - CQA (0%)	1	item			
	Indirects - Contractor (15%)	1	item		\$51,000.00	Increased rate due to staged excave
	Basal liner profile	(= 000			\$1,415,000.00	
	Surface preparation	15,000		\$2.00	\$30,000.00	
	Supply and install GCL	15,000		\$15.00	\$225,000.00	
	Supply and install HDPE geomembrane	15,000		\$15.00	\$225,000.00	
	Supply and install protection geotextile	15,000		\$10.00	\$150,000.00	
	Supply and install 300 mm thick drainage aggregate with PE leachate collection pipework	4,500	m3	\$100.00	\$450,000.00	
	Supply and install separation geotextile	15,000	m2	\$5.00	\$75,000.00	
	Indirects - Superintendent (0%)	1	item	-	\$0.00	Assume Council uses internal staff
	Indirects - CQA (7.5%)	1	item	-	\$87,000.00	Increased quantity due to staged lin
	Indirects - Contractor (15%)	1	item	-	\$173,000.00	Increased quantity due to staged lir
	Sidewall liner profile				\$307,000.00	Staged
	Surface preparation	5,000	m2	\$2.00	\$10,000.00	
	Supply and install GCL	5,000	m2	\$15.00	\$75,000.00	
	Supply and install LLDPE geomembrane	5,000		\$15.00	\$75,000.00	
	Supply and install geonet drainage composite	5,000	m2	\$18.00	\$90,000.00	
	Indirects - Superintendent (7.5%)		item		\$0.00	Assume Council uses internal staff
	Indirects - CQA (7.5%)	1	item			Increased rate due to staged lining
	Indirects - Contractor (15%)	1	item	_		Increased rate due to staged lining
					<i>+<i>•••••••••••••</i></i>	
	Cover material				\$224,775.00	
	Procure and stockpile cover material	8,325	m3	\$27.00	\$224,775.00	
		0,020		ΨΖ1.00	ΨΖΖΨ,ΙΙΟ.00	
	Capping profile				\$1,828,000.00	Staged
	Seal bearing surface preparation	20,000	m2	\$27.00	\$540,000.00	-
	Supply and install geonet drainage geocomposite	20,000	m2	\$27.00	. ,	Assume LFG underdrainage not re
		-				
	Supply and install LLDPE geomembrane or coated GCL	20,000	inz	\$15.00	\$300,000.00	

•	
f	
vation	
f	
f ining	
ining	
f	
]	
J	
auirod	
equired	

Client: Liverpool Plains Shire Council **Project:** Willow Tree WMF - Landfill Expansion **Subject:** Preliminary Capital Cost Estimate - All Items Project Number:12434581Prepared by:S KentwellChecked by:C Nivison-Smith

Supply and install 800 mm thick subsoil layer	16,000		\$27.00	\$432,000.00	
Supply and install 200 mm thick topsoil layer	4,000	m3	\$45.00	\$180,000.00	
Revegetation	20,000	m2	\$2.00	\$40,000.00	
Indirects - Superintendent (7.5%)	1	item	-	\$0.00	Assume Council uses internal staff
Indirects - CQA (7.5%)	1	item	-	\$112,000.00	Increased rate due to staged capping
Indirects - Contractor (15%)	1	item	-	\$224,000.00	Increased rate due to staged capping
UNDEVELOPED AREA - PIGGYBACK				\$5,313,825.00	
Bulk earthworks				\$489,000.00	Staged
Clearing and grubbing	25,000	m2	\$2.00	\$50,000.00	Otaged
Bulk earthworks	25,000		\$15.00	\$375,000.00	
Indirects - Superintendent (0%)	23,000	item	φ13.00		Assume Council uses internal staff
Indirects - CQA (0%)	1	item	-		Minimal for bulk earthworks
Indirects - COA (0%)	1		-		
	I	item	-	\$64,000.00	Increased rate due to staged excava
Basal liner profile				\$1,415,000.00	Staged
Surface preparation	15,000	m2	\$2.00	\$30,000.00	
Supply and install GCL	15,000	m2	\$15.00	\$225,000.00	
Supply and install HDPE geomembrane	15,000	m2	\$15.00	\$225,000.00	
Supply and install protection geotextile	15,000	m2	\$10.00	\$150,000.00	
Supply and install 300 mm thick drainage aggregate with PE leachate collection pipework	4,500	m3	\$100.00	\$450,000.00	
Supply and install separation geotextile	15,000	m2	\$5.00	\$75,000.00	
Indirects - Superintendent (0%)	10,000	item	+0.00		Assume Council uses internal staff
Indirects - CQA (7.5%)	1	item			Increased quantity due to staged lini
Indirects - Contractor (15%)	1	item	-		Increased quantity due to staged lini
				****	Ote med
Sidewall liner profile	E 000		¢0.00	\$307,000.00	Staged
Surface preparation	5,000		\$2.00	\$10,000.00	
Supply and install GCL	5,000		\$15.00	\$75,000.00	
Supply and install LLDPE geomembrane	5,000		\$15.00	\$75,000.00	
Supply and install geonet drainage composite	5,000		\$18.00	\$90,000.00	
Indirects - Superintendent (7.5%)	1	item	-		Assume Council uses internal staff
Indirects - CQA (7.5%)	1	item	-		Increased rate due to staged lining
Indirects - Contractor (15%)	1	item	-	\$38,000.00	Increased rate due to staged lining
Piggyback liner profile				\$548,500.00	Staged
Surface preparation	5,000		\$2.00	\$10,000.00	
Supply and install geogrid	5,000	m2	\$15.00	\$75,000.00	
Supply and install 500 mm thick settlement control layer	2,500	m3	\$15.00	\$37,500.00	
Supply and install GCL	5,000	m2	\$15.00	\$75,000.00	
Supply and install LLDPE geomembrane	5,000	m2	\$15.00	\$75,000.00	
Supply and install 300 mm thick drainage aggregate with PE leachate collection pipework	1,500	m3	\$100.00	\$150,000.00	
Supply and install separation geotextile	5,000	m2	\$5.00	\$25,000.00	
Indirects - Superintendent (0%)		item			Assume Council uses internal staff

f	
bing	
bing	
f	
1	
vation	
IvaliUII	
f ining ining	
ining	
ining	
f	
9	
<i>.</i>	
f	

Client: Liverpool Plains Shire Council Project: Willow Tree WMF - Landfill Expansion Subject: Preliminary Capital Cost Estimate - All Items Project Number:12434581Prepared by:S KentwellChecked by:C Nivison-Smith

Indirects - CQA (7.5%)	1	item	-		Increased rate due to staged lining
Indirects - Contractor (15%)	1	item	-	\$67,000.00	Increased rate due to staged lining
Cover material				\$269,325.00	
Procure and stockpile cover material	9,975	m3	\$27.00	\$269,325.00	Assumed
Capping profile				\$2,285,000.00	Staged
Seal bearing surface preparation	25,000	m2	\$27.00	\$675,000.00	
Supply and install geonet drainage geocomposite	-	m2	\$18.00		Assume LFG underdrainage not requ
Supply and install LLDPE geomembrane or coated GCL	25,000	m2	\$15.00	\$375,000.00	
Supply and install 800 mm thick subsoil layer	20,000		\$27.00	\$540,000.00	
Supply and install 200 mm thick topsoil layer	5,000	m3	\$45.00	\$225,000.00	
Revegetation	25,000	m2	\$2.00	\$50,000.00	
Indirects - Superintendent (7.5%)	1	item	-	\$0.00	Assume Council uses internal staff
Indirects - CQA (7.5%)	1	item	-	\$140,000.00	Increased rate due to staged capping
Indirects - Contractor (15%)	1	item	-	\$280,000.00	Increased rate due to staged capping
UNDEVELOPED AREA - RELOCATE				\$5,419,450.00	
Bulk earthworks				\$661,000.00	
Clearing and grubbing	25,000		\$2.00	\$50,000.00	
Bulk earthworks	25,000		\$15.00	\$375,000.00	
Waste relocation	5,000		\$30.00	\$150,000.00	
Indirects - Superintendent (0%)	1	item	-		Assume Council uses internal staff
Indirects - CQA (0%)	1	item	-		Minimal for bulk earthworks
Indirects - Contractor (15%)	1	item	-	\$86,000.00	Increased rate due to staged excava
Basal liner profile				\$1,887,000.00	Staged
Surface preparation	20,000	m2	\$2.00	\$40,000.00	
Supply and install GCL	20,000	m2	\$15.00	\$300,000.00	
Supply and install HDPE geomembrane	20,000	m2	\$15.00	\$300,000.00	
Supply and install protection geotextile	20,000	m2	\$10.00	\$200,000.00	
Supply and install 300 mm thick drainage aggregate with PE leachate collection pipework	6,000	m3	\$100.00	\$600,000.00	
Supply and install separation geotextile	20,000	m2	\$5.00	\$100,000.00	
Indirects - Superintendent (0%)		item	-		Assume Council uses internal staff
Indirects - CQA (7.5%)	1	item	-	\$116,000.00	Increased quantity due to staged linin
Indirects - Contractor (15%)	1	item	-		Increased quantity due to staged linit
Sidewall liner profile				\$307,000.00	Staged
Surface preparation	5,000	m?	\$2.00	\$10,000.00	
Supply and install GCL	5,000		\$2.00	\$75,000.00	
Supply and install LLDPE geomembrane	5,000		\$15.00	\$75,000.00	
Supply and install LLDPE geometribiane Supply and install geonet drainage composite	5,000		\$15.00	\$75,000.00	
Indirects - Superintendent (7.5%)	3,000	item	φ10.00	. ,	Assume Council uses internal staff
Indirects - Superintendent (7.5%)	1	item			Increased rate due to staged lining
			-	ψισ,000.00	

ng	
ng	
-	-
	-
	-
	-
	-
	-
required	-
Tequiled	
aff	
pping	
pping	
	-
	-
	-
aff	-
	-
cavation	_
cavation	-
aff	
d lining	
d lining	-
0	
	-
	-
	_
	_
- #	
aff	
ng	
ng	

Client: Liverpool Plains Shire Council Project: Willow Tree WMF - Landfill Expansion Subject: Preliminary Capital Cost Estimate - All Items Project Number:12434581Prepared by:S KentwellChecked by:C Nivison-Smith

1 1			1		ſ
Cover material				\$279,450.00	
Procure and stockpile cover material	10,350	m3	\$27.00	\$279,450.00	
Capping profile				\$2,285,000.00	Stagod
Seal bearing surface preparation	25,000	m2	\$27.00	\$675,000.00	-
Supply and install geonet drainage geocomposite		m2	\$27.00		Assume LFG underdrainage not rec
Supply and install LLDPE geomembrane or coated GCL	25,000		\$15.00	\$375,000.00	-
Supply and install 800 mm thick subsoil layer	20,000		\$13.00	\$540,000.00	
Supply and install 200 mm thick topsoil layer	5,000		\$45.00	\$225,000.00	
Revegetation	25,000		\$2.00	\$50,000.00	
Indirects - Superintendent (7.5%)		item	φ2.00	. ,	Assume Council uses internal staff
Indirects - CQA (7.5%)		item			Increased rate due to staged cappir
Indirects - Contractor (15%)		item	-		Increased rate due to staged capping
FORMER QUARRY AREA - OFFSET				\$6,462,605.00	
Bulk earthworks				\$328,000.00	Staged
Clearing and grubbing	30,000	m2	\$2.00	\$60,000.00	_
Bulk earthworks	15,000		\$15.00	\$225,000.00	
Indirects - Superintendent (0%)		item	φ10.00 -	· ,	Assume Council uses internal staff
Indirects - CQA (0%)	1	item		•	Minimal for bulk earthworks
Indirects - Contractor (15%)	1	item	-		Increased rate due to staged excav
					-
Basal liner profile		-		\$2,170,000.00	=
Surface preparation	23,000		\$2.00	\$46,000.00	
Supply and install GCL	23,000		\$15.00	\$345,000.00	
Supply and install HDPE geomembrane	23,000		\$15.00	\$345,000.00	
Supply and install protection geotextile	23,000		\$10.00	\$230,000.00	
Supply and install 300 mm thick drainage aggregate with PE leachate collection pipework	6,900	m3	\$100.00	\$690,000.00	
Supply and install separation geotextile	23,000	m2	\$5.00	\$115,000.00	
Indirects - Superintendent (0%)	1	item	-	\$0.00	Assume Council uses internal staff
Indirects - CQA (7.5%)	1	item	-	\$133,000.00	Increased quantity due to staged lin
Indirects - Contractor (15%)	1	item	-	\$266,000.00	Increased quantity due to staged lin
Sidewall liner profile				\$720,000.00	Staged
Supply and install earthen fill	14,000	m3	\$27.00	\$378,000.00	
Supply and install LLDPE geomembrane	7,000		\$15.00	\$105,000.00	
Supply and install protection geotextile	7,000		\$10.00	\$70,000.00	
Supply and install sacrificial / slip plane geotextile	7,000		\$5.00	\$35,000.00	
		item	-		Assume Council uses internal staff
Indirects - Superintendent (7.5%)	•				Increased rate due to staged lining
Indirects - Superintendent (7.5%) Indirects - CQA (7.5%)	1	Item	- 1	ψ11,000.00	
Indirects - Superintendent (7.5%) Indirects - CQA (7.5%) Indirects - Contractor (15%)		item item	-		Increased rate due to staged lining
Indirects - CQA (7.5%)			-		Increased rate due to staged lining

equired
•
f
ing
ing
ing
f
I
vation
Vallon
f
ining
ining
lillig
f
]

Client: Liverpool Plains Shire Council Project: Willow Tree WMF - Landfill Expansion Subject: Preliminary Capital Cost Estimate - All Items Project Number:12434581Prepared by:S KentwellChecked by:C Nivison-Smith

Capping profile				\$2,742,000.00	Staged
Seal bearing surface preparation	30,000	m2	\$27.00	\$810,000.00	
Supply and install geonet drainage geocomposite		m2	\$18.00	. ,	Assume LFG underdrainage not req
Supply and install LLDPE geomembrane or coated GCL	30,000		\$15.00	\$450,000.00	
Supply and install 800 mm thick subsoil layer	24,000		\$27.00	\$648,000.00	
Supply and install 200 mm thick topsoil layer	6,000		\$45.00	\$270,000.00	
Revegetation	30,000		\$2.00	\$60,000.00	
ndirects - Superintendent (7.5%)	1	item	+2.00		Assume Council uses internal staff
ndirects - CQA (7.5%)	1	item	-		Increased rate due to staged cappin
ndirects - Contractor (15%)	1	item	-		Increased rate due to staged cappin
FORMER QUARRY AREA - PIGGYBACK				\$8,378,290.00	
Bulk earthworks				\$404,500.00	Stagod
Clearing and grubbing	37,000	m2	\$2.00	\$74,000.00	
Bulk earthworks	18,500		\$2.00	\$74,000.00	
ndirects - Superintendent (0%)	10,500	item	\$15.00	. ,	Assume Council uses internal staff
ndirects - CQA (0%)	1	item			Minimal for bulk earthworks
	1		-		
ndirects - Contractor (15%)	1	item	-	\$53,000.00	Increased rate due to staged excava
Basal liner profile				\$1,321,000.00	-
Surface preparation	14,000		\$2.00	\$28,000.00	
Supply and install GCL	14,000		\$15.00	\$210,000.00	
Supply and install HDPE geomembrane	14,000		\$15.00	\$210,000.00	
Supply and install protection geotextile	14,000		\$10.00	\$140,000.00	
Supply and install 300 mm thick drainage aggregate with PE eachate collection pipework	4,200	m3	\$100.00	\$420,000.00	
Supply and install separation geotextile	14,000	m2	\$5.00	\$70,000.00	
ndirects - Superintendent (0%)	1	item	-	\$0.00	Assume Council uses internal staff
ndirects - CQA (7.5%)	1	item	-	\$81,000.00	Increased quantity due to staged lini
ndirects - Contractor (15%)	1	item	-	\$162,000.00	Increased quantity due to staged lini
Sidewall liner profile				\$1,338,000.00	Staged
Supply and install earthen fill	26,000	m3	\$27.00	\$702,000.00	
Supply and install LLDPE geomembrane	13,000	m2	\$15.00	\$195,000.00	
Supply and install protection geotextile	13,000	m2	\$10.00	\$130,000.00	
Supply and install sacrificial / slip plane geotextile	13,000	m2	\$5.00	\$65,000.00	
ndirects - Superintendent (7.5%)	1	item	-	\$0.00	Assume Council uses internal staff
ndirects - CQA (7.5%)	1	item	-	\$82,000.00	Increased rate due to staged lining
ndirects - Contractor (15%)	1	item	-		Increased rate due to staged lining
Piggyback liner profile			+	\$1,096,000.00	Staged
Surface preparation	10,000	m2	\$2.00	\$20,000.00	
Supply and install geogrid	10,000		\$15.00	\$150,000.00	
Supply and install 500 mm thick settlement control layer	5,000		\$15.00	\$75,000.00	
Supply and install GCL	10,000		\$15.00	\$150,000.00	

equired
ing
ing
-
vation
-
ning ning
ning
-

Client: Liverpool Plains Shire Council Project: Willow Tree WMF - Landfill Expansion Subject: Preliminary Capital Cost Estimate - All Items Project Number:12434581Prepared by:S KentwellChecked by:C Nivison-Smith

Supply and install LLDPE geomembrane	10,000	m2	\$15.00	\$150,000.00	
Supply and install 300 mm thick drainage aggregate with PE leachate collection pipework	3,000	m3	\$100.00	\$300,000.00	
Supply and install separation geotextile	10,000	m2	\$5.00	\$50,000.00	
Indirects - Superintendent (0%)	1	item	-	\$0.00	Assume Council uses internal staff
Indirects - CQA (7.5%)	1	item	-	\$67,000.00	Increased rate due to staged lining
Indirects - Contractor (15%)	1	item	-		Increased rate due to staged lining
Cover material				\$1,019,790.00	
Procure and stockpile cover material	37,770	m3	\$27.00	\$1,019,790.00	Assumed
Capping profile				\$3,199,000.00	Staged
Seal bearing surface preparation	35,000	m2	\$27.00	\$945,000.00	
Supply and install geonet drainage geocomposite	-	m2	\$18.00	\$0.00	Assume LFG underdrainage not rec
Supply and install LLDPE geomembrane or coated GCL	35,000	m2	\$15.00	\$525,000.00	•
Supply and install 800 mm thick subsoil layer	28,000		\$27.00	\$756,000.00	
Supply and install 200 mm thick topsoil layer	7,000		\$45.00	\$315,000.00	
Revegetation	35,000	m2	\$2.00	\$70,000.00	
Indirects - Superintendent (7.5%)	1	item	-	\$0.00	Assume Council uses internal staff
Indirects - CQA (7.5%)	1	item	-		Increased rate due to staged cappir
Indirects - Contractor (15%)	1	item	-		Increased rate due to staged cappir
FORMER QUARRY AREA - RELOCATE				\$8,543,540.00	
Bulk earthworks				\$702,500.00	Staged
Clearing and grubbing	37,000	m2	\$2.00	\$74,000.00	
Bulk earthworks	18,500		\$15.00	\$277,500.00	
Waste relocation	10,000		\$30.00	\$300,000.00	
Indirects - Superintendent (0%)	1	item	-	. ,	Assume Council uses internal staff
Indirects - CQA (0%)	1	item	-		Minimal for bulk earthworks
Indirects - Contractor (15%)	1	item	-		Increased rate due to staged excav
Basal liner profile				\$2,264,000.00	Staged
Surface preparation	24,000	m2	\$2.00	\$48,000.00	
Supply and install GCL	24,000		\$15.00	\$360,000.00	
Supply and install HDPE geomembrane	24,000		\$15.00	\$360,000.00	
Supply and install protection geotextile	24,000		\$10.00	\$240,000.00	
Supply and install 300 mm thick drainage aggregate with PE	7,200		\$100.00	\$720,000.00	
leachate collection pipework Supply and install separation geotextile	24,000	m2	\$5.00	\$120,000.00	
Indirects - Superintendent (0%)		item	φ <u></u> υ.υυ		Assume Council uses internal staff
Indirects - CQA (7.5%)					Increased quantity due to staged lin
Indirects - CQA (7.5%) Indirects - Contractor (15%)	1	item item	-		Increased quantity due to staged lin
				¢4 000 000 00	Charad
Sidewall liner profile	00.000		#07 00	\$1,338,000.00	
Supply and install earthen fill	26,000	m3	\$27.00	\$702,000.00	
Supply and install LLDPE geomembrane	13,000		\$15.00	\$195,000.00	

r
equired
ing ing
ing
-
vation
f
ning
ning ning
-

Client: Liverpool Plains Shire Council Project: Willow Tree WMF - Landfill Expansion Subject: Preliminary Capital Cost Estimate - All Items Project Number:12434581Prepared by:S KentwellChecked by:C Nivison-Smith

Supply and install protection geotextile	13,000	m2	\$10.00	\$130,000.00	
Supply and install sacrificial / slip plane geotextile	13,000		\$5.00	\$65,000.00	
Indirects - Superintendent (7.5%)	,	item	φ5.00	. ,	Assume Council uses internal staff
Indirects - CQA (7.5%)		item	-		Increased rate due to staged lining
Indirects - Contractor (15%)	1	item			Increased rate due to staged lining
	I	liem		\$104,000.00	increased rate due to staged infing
Cover material				\$1,040,040.00	
Procure and stockpile cover material	38,520	m3	\$27.00	\$1,040,040.00	Assumed
Capping profile				\$3,199,000.00	Staged
Seal bearing surface preparation	35,000	m2	\$27.00	\$945,000.00	-
Supply and install geonet drainage geocomposite		m2	\$18.00		Assume LFG underdrainage not req
Supply and install LLDPE geomembrane or coated GCL		m2	\$15.00	\$525,000.00	
Supply and install 800 mm thick subsoil layer	28,000		\$27.00	\$756,000.00	
Supply and install 200 mm thick topsoil layer	7,000		\$45.00	\$315,000.00	
Revegetation	35,000		\$2.00	\$70,000.00	
Indirects - Superintendent (7.5%)		item	-		Assume Council uses internal staff
Indirects - CQA (7.5%)	1	item			Increased rate due to staged capping
Indirects - Contractor (15%)	1	item	-		Increased rate due to staged capping
OTHER ITEMS				\$1,407,000.00	
Groundwater management				\$0.00	Staged
N/A	1	Item	-	\$0.00	Assume not required based on exist
Leachate management				\$303,000.00	Initial
Leachate pond	1	item	\$200,000.00	\$200,000.00	
Riser pipework	1	item	\$5,000.00	\$5,000.00	
Supply and install pipework/connect to leachate dam	100	m	\$90.00	\$9,000.00	
Pump and instrumentation		item	\$50,000.00	\$50,000.00	
Indirects - Superintendent (5%)	1	item	-		Assume Council uses internal staff
Indirects - CQA (5%)	1	item		\$13,000.00	Assume obtained uses internal stan
Indirects - Contractor (10%)		item	-	\$26,000.00	
Surface water management				\$144,000.00	
Construct diversion and collection berms/drains		item	\$25,000.00	\$25,000.00	
Sediment pond/s		item	\$100,000.00	\$100,000.00	
Indirects - Superintendent (5%)	1	item			Assume Council uses internal staff
Indirects - CQA (7.5%)	1	item			Minimal for bulk earthworks
Indirects - Contractor (15%)	1	item		\$19,000.00	
Landfill gas management				\$230,000.00	Staged
Gas collection bores and manifolds	1	Item	\$100,000.00		Nominal based on cell dimensions
Landfill gas flare	1	Item	\$100,000.00		Nominal based on cell dimensions
Indirects - Superintendent (5%)	1	item	-		Assume Council uses internal staff
Indirects - CQA (7.5%)		item		\$0.00	
				ψ0.00	1 4/7 4

quired	
ng	
ng	
•	
sting information	
sting information	

Client: Liverpool Plains Shire Council Project: Willow Tree WMF - Landfill Expansion Subject: Preliminary Capital Cost Estimate - All Items Project Number:12434581Prepared by:S KentwellChecked by:C Nivison-Smith

			\$345,000.00	Staged
1 it	tem	\$300,000.00	\$300,000.00	
1 it	tem	-	\$0.00	Assume Council uses internal staff
1 it	tem	-	\$0.00	N/A
1 it	tem	-	\$45,000.00	
			\$385,000.00	Initial
1 it	tem	\$100,000.00	\$100,000.00	
1 it	tem	\$50,000.00	\$50,000.00	
1 it	tem	\$50,000.00	\$50,000.00	
1 it	tem	\$150,000.00	\$150,000.00	
1 it	tem	-	\$0.00	Assume Council uses internal staff
1 it	tem	-	\$0.00	N/A
1 it	tem	-	\$35,000.00	
	1 ii 1 ii 1 ii 1 ii 1 ii 1 ii 1 ii 1 ii	1 item 1 item	1 item - 1 item \$100,000.00 1 item \$50,000.00 1 item \$50,000.00 1 item \$150,000.00 1 item - 1 item - 1 item -	1 item \$300,000.00 \$300,000.00 1 item - \$0.00 1 item - \$0.00 1 item - \$0.00 1 item - \$0.00 1 item - \$45,000.00 1 item \$100,000.00 \$100,000.00 1 item \$50,000.00 \$100,000.00 1 item \$50,000.00 \$50,000.00 1 item \$50,000.00 \$50,000.00 1 item \$150,000.00 \$150,000.00 1 item - \$0.00 1 item - \$0.00 1 item - \$0.00

ff	
ff	

Appendix C Willow Tree WMF – Geotechnical Investigation for Landfill Expansion (GHD, 2020)

Liverpool Plains Shire Council

Willow Tree Waste Management Facility Geotechnical investigation for landfill expansion

February 2021

Table of contents

1.	Introd	duction	1
	1.1	Background	1
	1.2	Purpose	1
	1.3	Scope	2
	1.4	Limitations	2
2.	Meth	odology	4
	2.1	Desktop study	4
	2.2	Fieldwork	4
	2.3	Laboratory testing	4
3.	Site o	description and surface observations	5
	3.1	Geological setting	5
	3.2	Soil landscape	5
	3.3	Topography and areas of disturbance	6
	3.4	Rock exposures	6
4.	Labo	ratory test results	10
5.	Subs	urface investigation findings	11
6.	Discu	ission	13
	6.1	Excavation conditions	13
	6.2	Excavated material characteristics and re-use	13
	6.3	Further investigation work recommendations	14

Table index

Table 4-1	Particle size distribution test results	10
Table 4-2	Atterberg Limits Results	10
Table 5-1	Test pit summary – depth of encountered materials (m)	11

Image index

Image 1	Location of investigated site on Lot 213	.1
Image 2	Site location and geological setting	.5
Image 3	Areas of surface disturbance	.6
Image 4	Noted rock exposures and bedding / joint observations	.7
Image 5	Shallow excavation in sandstone at TP08	.7
Image 6	Conglomerate ridge – looking north from TP03	.8

Image 7	Conglomerate ridge – looking south on main block	8
Image 8	Former quarry panorama	8
Image 9	Former quarry jointing	9
Image 10	Bedding and joints in sandstone along roadside	9
Image 11	Willow Tree Gravel quarry highwall	.14

Appendices

- Appendix A General Notes and standard sheets
- Appendix B Figures
- Appendix C Test Pit Logs and Photographs
- Appendix D Laboratory Test Reports

1. Introduction

1.1 Background

In 2018, Liverpool Plains Shire Council (Council) developed a 10-year strategy for the ongoing management of waste within their region (MRA, 2018). Landfilling forms an essential part of this strategy, along with the waste avoidance and reduction, increased recycling, and diversion of waste from landfill. The waste management strategy proposes to rationalise the landfilling operations across the region by establishing the Willow Tree Management Facility (WMF) (the site) as the primary landfill, servicing Council's Local Government Area (LGA), via an expansion of this existing landfill site with the existing lot boundary.

Council engaged GHD Pty Ltd (GHD) to complete a geotechnical investigation of a portion of the proposed expansion site on Lot 213 DP1173230 as shown in the image below.

Image 1 Location of investigated site on Lot 213

1.2 Purpose

The purpose of the investigation was to develop a greater understanding of the geology in the landfill expansion area to support future design work, including information on the geotechnical properties of the existing materials for potential reuse as part of the construction, operation and closure.

1.3 Scope

The scope of work was developed by Council in consultation with GHD and set out our proposal to dated 25 November 2020 (GHD Ref. 12532265-51047-3). The following was completed:

- Preparation of a Job Safety and Environmental Analysis (JSEA) covering the tasks undertaken by GHD on site.
- Geotechnical logging of 24 pendulum auger test pits at locations nominated by Council.
- Geotechnical observations of site surface conditions, including the adjacent quarry.
- Laboratory testing of selected samples.
- Preparation of this report.

A geotechnical desktop study of the site was also completed by GHD and reported to Council in the draft geotechnical investigation brief. The findings of this desktop study are also reported herein for completeness.

This report must be read in conjunction with the General Notes included in Appendix A.

1.4 Limitations

This report: has been prepared by GHD for Liverpool Plains Shire Council and may only be used and relied on by Liverpool Plains Shire Council for the purpose agreed between GHD and the Liverpool Plains Shire Council as set out in Section 1.2 of this report.

GHD otherwise disclaims responsibility to any person other than Liverpool Plains Shire Council arising in connection with this report. GHD also excludes implied warranties and conditions, to the extent legally permissible.

The services undertaken by GHD in connection with preparing this report were limited to those specifically detailed in the report and are subject to the scope limitations set out in the report.

The opinions, conclusions and any recommendations in this Report are based on conditions encountered and information reviewed at the date of preparation of the Report. GHD has no responsibility or obligation to update this Report to account for events or changes occurring subsequent to the date that the Report was prepared. Specifically, this Report does not take into account the effects, implications and consequences of or responses to COVID-19, which is a highly dynamic situation and rapidly changing. These effects, implications, consequences of and responses to COVID-19 may have a material effect on the opinions, conclusions, recommendations, assumptions, qualifications and limitations in this Report, and the entire Report must be re-examined and revisited in light of COVID-19. Where this Report is relied on or used without obtaining this further advice from GHD, to the maximum extent permitted by law, GHD disclaims all liability and responsibility to any person in connection with, arising from or in respect of this Report whether such liability arises in contract, tort (including negligence) or under statute.

GHD has prepared this report on the basis of information provided by Liverpool Plains Shire Council and others who provided information to GHD (including Government authorities), which GHD has not independently verified or checked beyond the agreed scope of work. GHD does not accept liability in connection with such unverified information, including errors and omissions in the report which were caused by errors or omissions in that information.

The opinions, conclusions and any recommendations in this report are based on information obtained from, and testing undertaken at or in connection with, specific sample points. Site conditions at other parts of the site may be different from the site conditions found at the specific sample points.

Investigations undertaken in respect of this report are constrained by the particular site conditions, such as the location of buildings, services and vegetation. As a result, not all relevant site features and conditions may have been identified in this report.

Site conditions (including the presence of hazardous substances and/or site contamination) may change after the date of this Report. GHD does not accept responsibility arising from, or in connection with, any change to the site conditions. GHD is also not responsible for updating this report if the site conditions change.

2. Methodology

2.1 Desktop study

The desktop study included review of published geology maps, soil landscape maps, recent aerial photographs and MinView spatial database.

The findings are presented in Section 3.

2.2 Fieldwork

A subsurface investigation was undertaken on the 3 and 4 December 2020 and comprised excavation of 24 test pits ranging from 0.1 to 1.9 m depth arranged on a 50 m by 50 m grid by Council.

The test pit locations were surveyed and pegged by Council. The locations are shown in Figure 1 in Appendix B. This figure was prepared using a survey CAD file provided by Council that was created by Bath Stewart Associates (Dwg. Ref. 20096, dated 14 May 2020). The pegged locations of TP4, TP5 and TP6 were unreachable by the excavator and were moved to the nearest practicable location. The locations shown in Figure 1 show this change.

The test pits were excavated using a 600 mm diameter pendulum auger mounted on a 13.5 tonne Kobelco excavator provided by Soil Conservation Services.

The test pitting was supervised on a full time basis by a suitably qualified geotechnical engineer from GHD who was responsible for locating the test pits, logging the encountered strata and collecting representative samples for laboratory testing. The logging was carried out in accordance with Australia Standard, AS1726-2017.

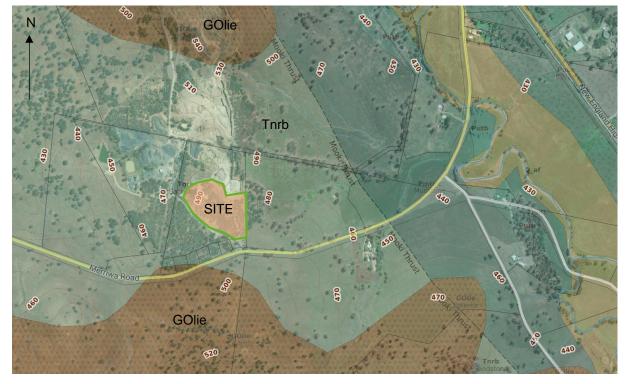
Following logging and sampling the test pits were backfilled with excavated material by a smaller excavator provided by Soil Conservation Services.

The test pit log sheets and photographs are contained in Appendix C. These should be read in conjunction with the attached Standard Sheets (in Appendix A), which explain the symbols used in their preparation and the limitations of the logging procedures.

Observations of site conditions within and around the site were also made as part of the fieldwork. This included such surface features as rock outcrops, bedding, joints, topography and areas of waste. Features of note were photographed and located using a handheld GPS and the site survey plan provided by Council.

2.3 Laboratory testing

Selected samples recovered from the test pits were submitted to GHD's NATA accredited laboratory in Artarmon for materials testing. The following laboratory testing was undertaken:


- Atterberg Limits (3 tests)
- Particle size distribution (10 tests)
- Point Load Index lump (5 tests)

The laboratory report sheets are contained in Appendix D. Test results are presented and discussed in Section 4.

Site description and surface observations

3.1 Geological setting

Reference to the NSW Seamless Geology dataset (accessed via MinView) indicates the site is situated on lower Triassic age Banks Wall Sandstone [Tnrb] as shown in the below image.

Image 2 Site location and geological setting

The superseded 1:250,000 scale Geological Series Sheet for Tamworth indicates that the site is situated on the Digby Conglomerate of the Narrabeen Group [Rrd].

As observed from bedrock outcrops on the site, this unit has bedding generally dipping toward a bearing of about 190° to 230° at 12° to 18° dip. The local lithology was observed to comprise conglomerate, pebbly sandstone and sandstone beds.

The Mooki thrust fault is located about 500 m to the north-east and dolerite capped hills, mapped as Liverpool East Basalt [GOlie], are about 1 km to the north of the site and south of Merriwa Road.

Willow Tree Gravel quarries both the Liverpool East Basalt and Banks Wall Sandstone units to produce a variety of road and rail construction materials.

3.2 Soil landscape

Reference to the 1:100,000 scale Soil Landscapes of the Murrurundi map indicate that the site has a Ferrosol and Kandosol soil landscape. The soil landscape is characterised by undulating to rolling low hills with slopes ranging 5-15%. Slopes are typically 375-625 m long with elevation ranging from 400-460 m. Total relief is less than 50 m and a local relief of less than 30 m with minor to moderate erosion hazards. The typical soil profile consists of fine sandy loam to silt loam, overlying a loamy clay to clay.

3.3 Topography and areas of disturbance

The site topography is shown by the contours on Figure 1 in Appendix B.

A roughly north-south trending ridge forms a central portion with an unsealed access track along it. The northern part of this ridge has been removed by quarrying such that the high point is now near TP14 and TP15. The land slopes away from this high point in all directions.

The northern and western area has been modified by quarrying and waste emplacement whereas the southern and eastern areas are largely undisturbed. While the ad-hoc waste placement in this area appears shallow and sporadic, notable exceptions are:

- A linear mound of waste parallel to the unsealed track.
- Deeper buried waste encountered in test pits TP1, TP2, TP4, TP7 and TP17 as discussed in Section 5.

These areas and features are shown approximately in the below image.

Image 3 Areas of surface disturbance

3.4 Rock exposures

Exposures of conglomerate, sandstone and pebbly sandstone are common throughout the investigated site and particularly beside the unsealed access track and at the former quarry. These and other areas of noted rock exposures are shown in the below image together with observations of bedding and joint (JT) dip and dip direction.

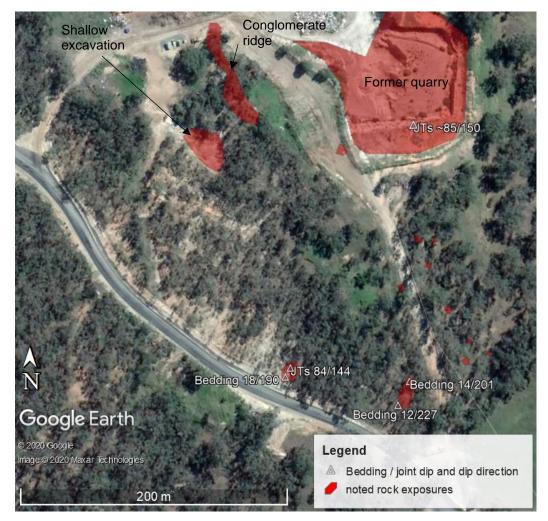


Image 4 Noted rock exposures and bedding / joint observations

The below series of photographs show the following notable features, the locations of which are shown in the above image.

- Shallow excavation in sandstone at TP08
- Conglomerate ridge near TP03
- Former quarry below TP05
- Bedding and joints in sandstone along the roadside

Image 5 Shallow excavation in sandstone at TP08

Image 6 Conglomerate ridge – looking north from TP03

Image 7 Conglomerate ridge – looking south on main block

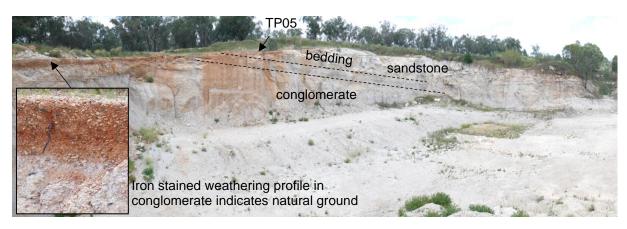


Image 8 Former quarry panorama

Image 9 Former quarry jointing

Image 10 Bedding and joints in sandstone along roadside

4. Laboratory test results

The laboratory results are summarised in the following tables. Test reports are in Appendix D.

Sample	Sample	Motorial description (from laboratory)	Percent	by dry	weight
location	depth (m)	Material description (from laboratory)	Gravel	Sand	Fines
TP1	1.5-1.8	(CL) CLAY with sand trace gravel ^{1A}	13	28	59
TP9	0.2-0.5	(GP) GRAVEL with clay and sand ^{1A}	61	27	12
TP10	0.0-0.3	(SC) Clayey Gravelly SAND ^{1B}	34	40	26
TP13	1.0-1.5	(CL) Sandy CLAY with gravel ^{1A}	22	39	39
TP15	0.5-1.1	(GM/SM) Silty SANDY GRAVEL 1A	46	40	14
TP18	0.5-1.0	(GC/SC) Clayey SANDY GRAVEL ^{1A}	43	41	16
TP21	1.0-1.7	(CL) Sandy CLAY with gravel ^{2A}	19	39	42
TP22	0.5-1.2	(CL) Sandy CLAY with gravel ^{2A}	17	33	50
TP23	0.5-1.3	(SC/GC) Clayey GRAVELLY SAND ^{1A}	40	44	16
TP24	0.5-1.5	(SC) Clayey SAND with gravel ^{1A}	29	49	22

 Table 4-1 Particle size distribution test results

1A. Sample from conglomerate / pebbly sandstone. 1B. Sample from residual conglomerate / pebbly sandstone.

2A. Sample from sandstone

As explained on the Standard Sheets in Appendix A, material with 35% or more fines is classified as a fine grained (CLAY or SILT depending on behaviour of the fine grained portion). For example, the sample from TP13 is CLAY despite having 61% combined sand and gravel.

The results of the particle size distribution tests show the tested samples are poorly sorted mixtures of gravel, sand and fines (clay and silt sized material).

With reference to the distribution charts included with the test reports in Appendix D, samples from sandstone tend to have significantly higher proportions of fines and less gravel compared to samples from conglomerate. An exception is the sample from TP01 which has a very high proportion of fines despite being from conglomerate / pebbly sandstone.

			0/ of comple	Atterberg Limits			
Sample location	Sample depth (m)	Material description (from laboratory)	% of sample passing 425 μm	LL (%)	PL (%)	PI	WPI
TP10	0.0-0.3	(SP) Clayey gravelly SAND	44	35	17	18	792
TP21	1.0-1.7	(CL) Sandy CLAY with gravel	70	24	15	9	630
TP22	0.5-1.2	(CL) Sandy CLAY with gravel	77	31	17	14	1078

Table 4-2 Atterberg Limits Results

Where LL = Liquid Limit PL = Plastic Limit PI = Plasticity Index

 * Atterberg tests are performed on the portion of sample that is less than 425 μm

The Atterberg Limit results confirm the logging of the tested material as low plasticity clay (CL).

Weighted Plasticity Index values for these samples has been calculated based on the percentage of material finer than 425 μ m as follows.

Weighted Plasticity Index (WPI) = PI x % passing 425 µm sieve

5. Subsurface investigation findings

General descriptions of the encountered subsurface conditions are provided below. This section should be read in conjunction with the test pit logs in Appendix C for a detailed description of the subsurface conditions encountered at each test location.

The three cross-sections presented on Figure 2 in Appendix B provide an interpretation of the subsurface conditions encountered based on the observed bedding dip and dip direction.

The following Table 5-1 presents a summary of the test pit locations and termination depths.

Test	Fill /	Conglomera	ate / Pebbly Sandstone	Sandstone (moderately				
Pit	Waste	Residual	Extremely Weathered	to highly weathered)	LoE			
TP1	0 - 0.5	0.5 – 1.2	1.2 – 1.9	n.e.	1.9			
TP2	0 - 0.5	n.e.	n.e.	n.e.	0.5			
TP3	n.e.	0.05 - 0.6	n.e.	n.e.	0.6			
TP4	0 - 0.6	n.e.	n.e.	n.e.	0.6			
TP5	n.e.	n.e.	n.e.	0 - 0.3	0.3			
TP6	n.e.	n.e.	n.e.	0 - 0.1	0.1			
TP7	0 - 0.3	n.e.	0.3 – 1.0	n.e.	1.0			
TP8	n.e.	n.e.	n.e.	0 – 0.6	0.6			
TP9	n.e.	n.e.	0-0.9	n.e.	0.9			
TP10	n.e.	0 - 0.3	0.3 – 1.1	n.e.	1.1			
TP11	0 – 0.15	0.15 – 0.3	0.3 – 0.7	from 0.7	0.7			
TP12	n.e.	0 - 0.3	0.3 – 1.1	n.e.	1.1			
TP13	n.e.	n.e.	0.05 – 1.5	1.5 – 1.6	1.6			
TP14	0 - 0.5	n.e.	0.5 – 1.2	n.e.	1.2			
TP15	n.e.	n.e.	0.05 – 1.1 (slightly weathered from 0.9)	n.e.	1.1			
TP16	n.e.	n.e.	0 – 0.2 (slightly weathered)	n.e.	0.2			
TP17	0 – 1.2	n.e.	n.e.	1.2 – 1.3 (extremely weathered)	1.3			
TP18	n.e.	n.e.	0.05 – 1.8	n.e.	1.8			
TP19	n.e.	0-0.4	0.4 - 0.8	n.e.	0.8			
TP20	n.e.	0-0.2	0.2 - 0.7	n.e.	0.7			
TP21	n.e.	n.e.	0 - 0.45	0.45 – 1.8	1.8			
TP22	n.e.	n.e.	1.2 – 1.3 (highly to moderately weathered)	0.1 – 1.2 (extremely weathered)	1.3			
TP23	n.e.	n.e.	0.0 – 1.3	n.e.	1.3			
TP24	n.e.	n.e.	0 – 1.6	1.6 – 1.8	1.8			
n.e. = n	n.e. = not encountered; LoE = limit of excavation							

Table 5-1 Test pit summary – depth of encountered materials (m)

In general terms the subsurface conditions encountered comprised thickly bedded weathered conglomerate / pebbly sandstone and thinner sandstone beds. In some areas these materials were overlain by residual red-brown soils (derived from conglomerate) and in other areas by fill or waste debris.

Conglomerate / pebbly sandstone was more commonly encountered and was typically extremely weathered and of very low strength. In TP15 and TP16 there was noticeably less weathered conglomerate judged to be of medium strength. The conglomerate / pebbly sandstone was typical recovered from the auger as poorly sorted mixtures of rounded gravel, sand and fines of low plasticity.

Sandstone was often encountered at the ground surface or below a conglomerate bed and was of medium strength, frequently resulting in practical refusal of the auger. In TP21 the sandstone was more thinly bedded and so could be excavated with the auger. In TP17 and TP22 the sandstone was extremely weathered, thinly bedded and of very low strength. The sandstone was typical recovered from the auger as low plasticity Sandy CLAY with gravel.

Waste debris from or near ground surface (uncovered or with very thin covering) was encountered at TP01, TP04, TP07 and TP17. Often this waste was mixed with soil. At TP01 and TP02 a more deliberate soil cover of about 0.3 m thickness over the waste was apparent.

The maximum thickness of waste encountered (excluding cover thickness at TP01 and TP02) was in TP17 (1.2 m over sandstone). Second thickest was in TP04 (0.6 m to the limit of excavation). These occurrences are likely to be linked with the waste encountered in TP07 and associated with the linear 'waste mound' discussed in Section 3.3.

No groundwater was observed in the test pits.

6. Discussion

6.1 Excavation conditions

The 13.5 tonne excavator and pendulum auger met with practical refusal on numerous occasions. In TP02 and TP04 this was due to waste debris binding up around the auger. An excavator with general purpose bucket would have been able to excavated through this material.

In the remainder of conditions, practical refusal was due to very slow progress of the auger through less weathered and stronger conglomerate and sandstone. Where previous stripping of surficial weathered material had occurred such as at TP05, TP06 and TP16 refusal was reached at less than 0.3 m depth. In other locations, refusal was reached when rock strength increased below a shallow weathered profile.

Excavation with a small to medium sized tracked excavator and bucket is likely to meet with similar slow progress in these materials. The use of hydraulic hammers to increase excavation progress is not expected to be effective as the sandstone and conglomerate bedding is expected to be thick. Large excavators of at least 20 to 30 tonne with buckets and suitable teeth are expected to be more effective but progress could still be very slow in high strength materials that are generally expected below the limit of the test pit investigation.

The excavation method employed by Willow Tree Gravel in these same materials is blasting. Excavation of the former quarry also appears to have been by blasting.

Excavation for a landfill cell is expected to be well beyond the limit of our investigation. However, a good indication of conditions below this is available from the former quarry and Willow Tree Gravel quarry where blasting is used. The blasting plans and experience of Willow Tree Gravel in excavating these materials would provide a valuable guide to excavation of rock to create a landfill cell.

6.2 Excavated material characteristics and re-use

The characteristics of the material as excavated is a function of the excavation method. In this case a pendulum auger with new tungsten carbide teeth that are designed to roll and hence 'self-sharpen'. The effect was generally to grind through the material and it was only in the more thinly bedded sandstone that pieces of rock were recovered. Point Load Index testing could only be undertaken on these samples.

Excavation with a bucket, ripper or by blasting would produce material with larger pieces of rock. This can be seen in the below photo from the Willow Tree Gravel quarry.

To produce a similar material to that created by auger drilling, crushing of oversized material from ripping or blasting would be needed. For very low and low strength materials, use of a grid roller on thinly spread material is likely to be effective in reducing oversize proportions. However, the effectiveness of this technique should be confirmed with a field trial, particularly for breakup of medium strength rock which is expected to comprise a significant proportion of the excavated material.

Image 11 Willow Tree Gravel quarry highwall

Re-use functions of the excavated soil and rock for use in landfill operations will depend on how the material is excavated and blended. Based on the observed auger excavated material and products of Willow Tree Gravel from the same rock units the following material uses are expected to be achievable:

- Daily cover
- Intermediate cover
- Internal access roads and hardstands

The use of site won material in landfill cell liners would be restricted to protection layers for geosynthetics or liner foundation material. The material is expected to be too permeable to provide the function of a clay liner by itself and require significant processing of the harder rock for use in any drainage layers.

For capping materials, the site won material could provide a useful component but by itself is expected to be too permeable to provide the function of a clay capping.

6.3 Further investigation work recommendations

The scope of further geotechnical investigations should take into consideration the proposed landfill cell design and required volumes and specifications for various materials to be won from the excavation. Based on our preliminary understanding of the proposed landfill and the results of this investigation, we recommend the following be considered:

- Diamond cored boreholes and rock laboratory testing to assess rock strength and lithology and hence allow estimates of different rock unit volumes to be excavated.
- Consultation with Willow Tree Gravel on blasting, crushing and screening.
- Depending on proposed excavation methods and material handling: field trial with a large excavator (20 to 30 tonne) with grid rolling to breakup oversize.
- Additional laboratory testing of excavated and processed material to compare properties with specifications for various material functions.

Appendices

GHD | Report for Liverpool Plains Shire Council - Willow Tree Waste Management Facility, 12534581

Appendix A – General Notes and standard sheets

GENERAL NOTES

GHD

Specialist Services in Geotechnical Engineering, Geology, Field/Laboratory Testing and Hydrogeology www.ghd.com/Geotechnical

The report contains the results of a geotechnical investigation or study conducted for a specific purpose and client. The results may not be used or relied on by other parties, or used for other purposes, as they may contain neither adequate nor appropriate information. In particular, the investigation does not cover contamination issues unless specifically required to do so by the client.

To the maximum extent permitted by law, all implied warranties and conditions in relation to the services provided by GHD and the report are excluded unless they are expressly stated to apply in the report.

TEST HOLE LOGGING

The information on the test hole logs (boreholes, test pits, exposures etc.) is based on a visual and tactile assessment, except at the discrete locations where test information is available (field and/or laboratory results). The test hole logs include both factual data and inferred information. Moreover, the location of test holes should be considered approximate, unless noted otherwise (refer report). Reference should also be made to the relevant standard sheets for the explanation of logging procedures (Soil and Rock Descriptions, Core Log Sheet Notes etc.).

GROUNDWATER

Unless otherwise indicated, the water depths presented on the test hole logs are the depths of free water or seepage in the test hole recorded at the given time of measuring. The actual groundwater depth may differ from this recorded depth depending on material permeabilities (i.e. depending on response time of the measuring instrument). Further, variations of this depth could occur with time due to such effects as seasonal, environmental and tidal fluctuations or construction activities such as a change is ground surface level. Confirmation of groundwater levels, phreatic surfaces or piezometric pressures can only be made by appropriate surveys, instrumentation techniques and monitoring programmes.

INTERPRETATION OF RESULTS

The discussion or recommendations contained within this report normally are based on a site evaluation from discrete test hole data, often with only approximate locations (e.g. GPS). Generalised, idealised or inferred subsurface conditions (including any geotechnical cross-sections) have been assumed or prepared by interpolation and/or extrapolation of these data. As such these conditions are an interpretation and must be considered as a guide only.

CHANGE IN CONDITIONS

Local variations or anomalies in ground conditions do occur in the natural environment, particularly between discrete test hole locations or available observation sites. Additionally, certain design or construction procedures may have been assumed in assessing the soil-structure interaction behaviour of the site. Furthermore, conditions may change at the site from those encountered at the time of the geotechnical investigation through construction activities and constantly changing natural processes.

Any change in design, in construction methods, or in ground conditions as noted during construction, from those assumed or reported should be referred to GHD for appropriate assessment and comment.

GEOTECHNICAL VERIFICATION

Verification of the geotechnical assumptions and/or model is an integral part of the design process - investigation, construction verification, and performance monitoring. Variability is a feature of the natural environment and, in many instances, verification of soil or rock quality, or foundation levels, is required. There may be a requirement to extend foundation depths, to modify a foundation system and/or to conduct monitoring as a result of this natural variability. Allowance for verification by appropriate geotechnical personnel must be recognised and programmed for construction.

FOUNDATIONS

Where referred to in the report, the soil or rock quality, or the recommended depth of any foundation (piles, caissons, footings etc.) is an engineering estimate. The estimate is influenced, and perhaps limited, by the fieldwork method and testing carried out in connection with the site investigation, and other pertinent information as has been made available. The material quality and/or foundation depth remains, however, an estimate and therefore liable to variation. Foundation drawings, designs and specifications should provide for variations in the final depth, depending upon the ground conditions at each point of support, and allow for geotechnical verification.

REPRODUCTION OF REPORTS

Where it is desired to reproduce the information contained in our geotechnical report, or other technical information, for the inclusion in contract documents or engineering specification of the subject development, such reproductions must include at least all of the relevant test hole and test data, together with the appropriate Standard Description sheets and remarks made in the written report of a factual or descriptive nature.

Reports are the subject of copyright and shall not be reproduced either totally or in part without the prior written consent of GHD. GHD expressly disclaims responsibility to any person other than the client arising from or in connection with this report.

Specialist Services in Geotechnical Engineering, Geology, Field/Laboratory Testing and Hydrogeology www.ghd.com/Geotechnical

Soil is described in general accordance with <u>Australian Standard AS 1726-2017</u> (Geotechnical Site Investigations) in terms of visual and tactile properties, with potential refinement by laboratory testing. AS 1726 defines soil as particulate materials that occur in the ground and can be disaggregated or remoulded by hand in air or water without prior soaking. Classification of the soil is undertaken following description.

SOIL DESCRIPTION

The soil description includes a) Composition, b) Condition, c) Structure, d) Origin and e) Additional observations. 'FILL', 'TOPSOIL' or a 'MIXTURE OF SOIL AND COBBLES / BOULDERS' (with dominant fraction first) is denoted at the start of a soil description where applicable.

a) Soil Composition (soil name, colour, plasticity or particle characteristics, secondary and then minor components)

Soil Name: A soil is termed a *coarse grained soil* where the dry mass of sand and gravel particles exceeds <u>65%</u> of the total. Soils with more than <u>35%</u> fines (silt or clay particles) are termed *fine grained soils*. The soil name is made up of the primary soil component (in BLOCK letters), prefixed by applicable secondary component qualifiers. Minor components are applied as a qualifiers to the soil name (using the words 'with' or 'trace').

Particles are differentiated on the basis of size. 'Boulders' and 'cobbles' are outside the soil particle range, though their presence (and proportions) is noted. While individual particles may be designated as silt or clay based on grain size, fine grained soils are characterised as silt or clay based on tactile behaviour or Atterberg Limits, and not the relative composition of silt or clay sized particles.

Colour: The prominent colour is noted, followed by (spotted, mottled, streaked etc.) then secondary colours as applicable. Roughly equally proportioned colours are prefixed by (spotted, mottled, streaked etc.). Colour is described in its moist condition, though both wet and dry colours may also be provided if appropriate.

Plasticity: Fine grained soils are designated within standard ranges of plasticity based on tactile assessment or laboratory assessment of the Liquid Limit.

Particle Characteristics: The particle shape, particle distribution and particle size range within a coarse grained soil is described using standard terms. Particle composition may be described using rock or mineral names, with specific terms for carbonate soils.

Secondary and Minor Components: The primary soil is described and modified by secondary and minor components, with assessed ranges as tabulated.

Carbonate Soils: Carbonate content can be assessed by use of dilute '10%' HCl solution. Resulting clear sustained effervescence is interpreted as a *Carbonate soil* (approximately >50% carbonate), while weak or sporadic effervescence indicates *Calcareous soil* (< 50% carbonate). No effervescence is interpreted as a noncalcareous soil.

Organic and Peat Soils: Where identified, organic content is noted. *Organic soil* (2% to 25% organic matter) is usually identified by colour (usually dark grey/black) and odour (i.e. 'mouldy' or hydrogen sulphide odour). *Peat* (>25% organic matter) is identified by a spongy feel and fibrous texture. Peat soils' decomposition may be described as 'fibrous' (little / no decomposition), '*pseudo-fibrous'* (moderate decomposition) or '*amorphous'* (full decomposition).

Fraction	Compone	ents	Particle Size (mm)
0	BOULDERS		> 200
Oversize	COBBLES		63 - 200
	GRAVEL	Coarse	19 - 63
		Medium	6.7 -19
Coarse grained		Fine	2.36 - 6.7
soil particles	SAND	Coarse	0.6 - 2.36
		Medium	0.21 - 0.6
		Fine	0.075 - 0.21
Fine grained soil	SILT		0.002 - 0.075
particles	CLAY		< 0.002

av	Limit Range		
Silt Clay			
A	(Non Plastic)		
w Plasticity	≤ 35%		
edium Plasticity	> 35% and ≤ 50%		
gh Plasticity	> 50%		
	A w Plasticity edium Plasticity		

Particle Distribution Terms (Coarse Grained Soils)				
Well graded	good representation of all particle sizes			
Poorly graded	one or more intermediate sizes poorly represented			
Gap graded	one or more intermediate sizes absent			
Uniform	essentially of one size			

Particle Shape Terms (Coarse Grained Soils)					
Rounded Sub-angular Flaky or Platy					
Sub-rounded Angular Elongated					

Secondary	and Minor Comp	onents for (Coarse Grained Soils

Fines (%)	Modifier (as applicable)		Modifier (as applicable)
≤5	'trace silt / clay'	≤ 15	'trace sand / gravel'
> 5, ≤ 12	'with clay / silt'	> 15, ≤ 30	'with sand / gravel'
> 12	prefix 'silty / clayey'	> 30	prefix 'gravelly / sandy'

Secondary and Minor Components for Fine Grained Soils				
% Coarse	Modifier (as applicable)			
≤ 15	add <i>"trace sand / gravel"</i>			
> 15, ≤ 30	add <i>"with sand / gravel"</i>			
> 30	prefix soil <i>"sandy / gravelly"</i>			

GHD

Specialist Services in Geotechnical Engineering, Geology, Field/Laboratory Testing and Hydrogeology www.ghd.com/Geotechnical

b) Soil Condition (moisture, relative density or consistency)

Moisture: Fine grained soils are described relative to plastic or liquid limits, while coarse grained soils are assessed based on appearance and feel. The observation of seepage or free water is noted on the test hole logs.

Moisture - Coarse Grained Soils		Coarse Grained Soils	Moisture - Fine Grained Soils		
Term		Tactile Properties	Term		Tactile Properties
Dry	('D')	Non-cohesive, free running	Moist, dry of plastic limit	('w < PL')	Hard and friable or powdery
Maint	Moist ('M') Feels cool, darkened colour, tends to stick together	Moist, near plastic limit	('w≈PL')	Can be moulded	
WOISI		Moist, wet of plastic limit	('w > PL')	Weakened, free water forms on hands with handling	
Wet	Feels cool, darkened colour, ('W') tends to stick together, free	Wet, near liquid limit	('w≈LL')	Highly weakened, tends to flow when tapped	
WC1	(••)	water forms when handling	Wet, wet of liquid limit	('w > LL')	Liquid consistency, soil flows

Relative Density (Non Cohesive Soils): The Density Index is inherently difficult to assess by visual or tactile means, and is normally assessed by penetration testing (e.g. SPT, DCP, PSP or CPT) with published correlations. Assessment may be affected by moisture and *in situ* stress conditions. Density Index assessment may be refined by combination of *in situ* density testing and laboratory reference maximum and minimum density ranges.

Consistency (Cohesive Soils): May be assessed by direct measurement (shear vane, CPT etc.), or approximate tactile correlations. Cohesive soils include fine grained soils, and coarse grained soils with sufficient fine grained components to induce cohesive behaviour. A 'design shear strength' must consider the mode of testing, the *in situ* moisture content and potential for variations of moisture which may affect the shear strength.

Relative Dens	ity (No	n-Cohesive Soils)	Consistency (Cohesive Soils)			
Term and (Symb	ool)	Density Index (%)	Term and (Symbol)		Tactile Properties	Undrained Shear Strength
Very Loose	(VL)	≤ 15	Very Soft	(VS)	Extrudes between fingers when squeezed	< 12 kPa
Loose	(L)	> 15 and \leq 35	Soft	(S)	Can be moulded by light finger pressure	12 - 25 kPa
Medium Dense	(MD)	> 35 and \leq 65	Firm	(F)	Can be moulded by strong finger pressure	25 - 50 kPa
Dense	(D)	> 65 and ≤ 85	Stiff	(St)	Cannot be moulded by fingers	50 - 100 kPa
Very Dense	(VD)	> 85	Very Stiff	(VSt)	Can be indented by thumb nail	100 - 200 kPa
Consistency assessment can be influenced by moisture variation.		Hard	(H)	Can be indented with difficulty by thumb nail	> 200 kPa	
		Friable	(Fr)	Easily crumbled or broken into small pieces by hand	-	

c) Structure (zoning, defects, cementing)

Zoning: The <i>in situ</i> zoning is described using the terms bel <i>'layer'</i> (a continuous zone across the exposed sample) <i>'lens'</i> (a discontinuous layer with lenticular shape)	ow. <i>'Intermixed</i> ' may be used for an irregular arrangement. <i>'pocket</i> ' (an irregular inclusion of different material). <i>'interbedded</i> ' or <i>"interlaminated</i> ' (alternating soil types)
Defects: Described using terms below, with dimension orie <i>'parting'</i> (an open or closed surface or crack sub parallel to layering with little / no tensile strength - open or closed)	ntation and spacing described where practical. <i>'softened zone'</i> (in clayey soils, usually adjacent to a defect with associated higher moisture content)
<i>'fissure'</i> (as per a parting, though not parallel or sub parallel to layering – may include desiccation cracks)	<i>'tube'</i> (tubular cavity, singly or one of a large number, often formed from root holes, animal burrows or tunnel erosion)
<i>'sheared seam'</i> (zone of sub parallel near planar closely spaced intersecting smooth or slickensided fissures dividing the mass into lenticular or wedge shaped blocks)	<i>'tube cast'</i> (an infilled tube – infill may vary from uncemented through to cemented or have rock properties)
'sheared surface' (a near planar, curved or undulating smooth, polished or slickensided surface, indicative of displacement)	<i>'infilled seam'</i> (sheet like soil body cutting through the soil mass, formed by infilling of open defects)
Cementation: Soils may be cemented by various substance gypsum), and the cementing agent shall be identified if practice of the statement of	es (e.g. iron oxides and hydroxides, silica, calcium carbonate, ctical. Cemented soils are described as:

weakly cemented easily disaggregated by hand in air or water

'moderately cemented' effort required to disaggregate the soil by hand in air or water

Materials extending beyond 'moderately cemented' are encompassed within the rock strength range. Where consistent cementation throughout a soil mass is identified as a duricrust, it is described in accordance with duricrust rock descriptors. Where alternate descriptors of cementation development are applied for consistency with regional practices or geology, or client requirements, these are outlined separately.

GHD

Specialist Services in Geotechnical Engineering, Geology, Field/Laboratory Testing and Hydrogeology www.ghd.com/Geotechnical

d) Origin

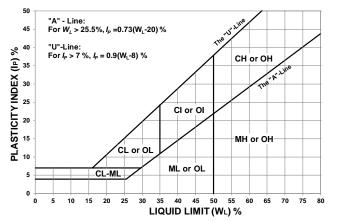
An interpretation is provided based on observations of landform, geology and fabric, and may further include assignment of a stratigraphic unit. The use of terms 'possibly' or 'probably' indicates a higher degree of uncertainty regarding the assessed origin or stratigraphic unit. Typical origin descriptors include:

-	
Residual	Formed directly from in situ weathering with no visible structure or fabric of the parent soil or rock.
Extremely weathered	Formed directly from in situ weathering, with remnant and/or fabric from the parent rock.
Alluvial	Deposited by streams and rivers (may be applied more generically as transported by water).
Estuarine	Deposited in coastal estuaries, including sediments from inflowing rivers, streams, and tidal currents.
Marine	Deposited in a marine environment.
Lacustrine	Deposited in freshwater lakes.
Aeolian	Transported by wind.
Colluvial and Slopewash	Soil and rock debris transported down slopes by gravity (with or without assistance of water). Colluvium is typically applied to thicker / localised deposits, and slopewash for thinner / widespread deposits.
TOPSOIL	Surficial soil, typically with high levels of organic material. Topsoils buried by other transported soils are termed <i>'remnant topsoil'</i> . Tree roots within otherwise unaltered soil does not characterise topsoil.
FILL	Any material which has been placed by anthropogenic processes (i.e. human activity).

e) Additional Observations

Additional observations may be included to supplement the soil description. Additional observations may consist of notations relating to soil characteristics (odour, contamination, colour changes with time), inferred geology (with delineation of soil horizons or geological time scale) or notes on sampling and testing application (including the reliability, recovery, representativeness, or condition of samples or test conditions and limitations). If the material is assessed to be not representative, terms such as 'poor recovery', 'non-intact', 'recovered as' or 'probably' are applied.

SOIL CLASSIFICATION


Classification allocates the material within distinct soil groups assigned a two character Group Symbol:

Coarse Grained Soils (sand and gravel: more than <u>65%</u> of soil coarser than 0.075 mm)			Fine Grained Soils (silt and clay: more than <u>35%</u> of soil finer than 0.075 mm)		
Major Division Group Symbol Soil Group		Major division	Group Symbol	Soil Group	
GRAVEL (more than half of the coarse fraction is > 2.36 mm)	GW	GRAVEL, well graded	SILT and CLAY (low to medium plasticity)	ML	SILT, low plasticity
	GP	GRAVEL, poorly graded		CL	CLAY, low plasticity
	GM	Silty GRAVEL		CI	CLAY, medium plasticity
	GC	Clayey GRAVEL		OL	Organic SILT
SAND (more than half of the coarse fraction is < 2.36 mm)	SW	SAND, well graded		MH	SILT, high plasticity
	SP	SAND, poorly graded	SILT and CLAY (high plasticity)	СН	CLAY, high plasticity
	SM	Silty SAND	(ОН	Organic CLAY / SILT
	SC	Clayey SAND	Highly Organic	Pt	PEAT

Coarse grained soils with fines contents between 5% and 12% are provided a dual classification comprising the two group symbols separated by a dash, e.g. for a poorly graded gravel with between 5% and 12% silt fines (poorly graded 'GRAVEL with silt'), the classification is GP-GM.

For the purpose of classification, *poorly graded, uniform,* or *gap graded* soils are all designated as poorly graded. Soils that are dominated by boulders or cobbles are described separately and are not classified.

Classification is routinely undertaken based on tactile assessment with the soil description. Refinement of soil classification may be applied using laboratory assessment, including particle size distribution and Atterberg Limits. Atterberg Limits testing is applied to the sample portion finer than 0.425 mm. Fine grained soil components are assessed on the basis of regions defined within the Modified Casagrande Chart.

GHD

Specialist Services in Geotechnical Engineering, Geology, Field/Laboratory Testing and Hydrogeology www.ghd.com/Geotechnical

Rock is described in general accordance with <u>Australian Standard AS 1726-2017</u> (Geotechnical site investigations) in terms of visual and tactile properties, with potential refinement by laboratory testing. AS 1726 defines rock as any aggregate of minerals and/or organic materials that cannot be disaggregated by hand in air or water without prior soaking. The rock description and classification distinguishes between rock material, defects, structure and rock mass.

ROCK DESCRIPTION AND CLASSIFICATION

a) Description of rock material (rock name, grain size and type, colour, texture and fabric, inclusions or minor components, moisture content and durability)

Rock Name: Simple rock names are used to provide a reasonable engineering description rather than a precise geological classification. The rock name is chosen on the basis of origin, with common types summarised below. Additional, non-exhaustive, terminology is included in AS 1726. Rock names not described within AS 1726 may be adopted, with geological characteristics typically noted within accompanying text.

Grain		Sedimentary			Metamorphic		Igneous		
Size	Olastia en Datuital	Carl	Carbonate		E - Roda al		F -1-1-		Maßa
(mm)	Clastic or Detrital	Low Porosity	Porous	Pyroclastic	Foliated	Non-Foliated	Felsic	\leftrightarrow	Mafic
>2.0	CONGLOMERATE (rounded grains in a finer matrix) BRECCIA (angular or irregular fragments in a finer matrix)	LIMESTONE (Predominantly CaCO ₃) or	CALCIRUDITE	AGGLOMERATE (rounded grains in a finer matrix) VOLCANIC BRECCIA (angular fragments in a finer matrix)	GNEISS	MARBLE (carbonate) QUARTZITE	GRANITE	DIORITE	GABBRO
2.0- 0.06	SANDSTONE	DOLOMITE (Predominantly	CALCARENITE	TUFF	SCHIST	SERPENTINITE	MICRO- GRANITE	MICRO- DIORITE	DOLERITE
0.06- 0.002	MUDSTONE (mostly silt)	CaMgCO ₃)	CALCISILTITE	Fine grained	PHYLLITE	HORNFELS	RHYOLITE		BASALT
<0.002	(silt and clay) CLAYSTONE (mostly clay)	i	CALCILUTITE	TUFF	or SLATE		NITULITE	ANDESITE	DAGALT

Reproduced with modification from Tables 15, 16 and 17, Clause 6.2.3.1, AS 1726-2017, Geotechnical site investigations.

Grain size: For rocks with predominantly sand sized grains the dominant or average grain size is described as follows:

Rock type	Coarse grained	Medium grained	Fine grained
Sedimentary rocks	Mainly 0.6 mm to 2 mm	Mainly 0.2 mm to 0.6 mm	Mainly 0.06 mm (just visible) to 0.2 mm
Igneous and metamorphic rocks	Mainly >2 mm	Mainly 0.06 mm to 2 mm	Mainly <0.6 mm (just visible)

Colour assists in rock identification and interpolation. Rock colour is generally described in a *"moist"* condition, using simple terms (e.g. grey, brown, etc.) and modified as necessary by *"pale"*, *"dark"*, or *"mottled"*. Borderline colours may be described as a combination of these colours (e.g. red-brown).

Texture refers to the arrangement of, or the relationship between, the component grains or crystals (e.g. porphyritic, crystalline or amorphous).

Fabric refers to visible grain arrangement along a preferential orientation or a layering. Fabric may be noted as *"indistinct*" (little effect on strength) or *"distinct*" (rock breaks more easily parallel to the fabric). Common terms include *"massive"* or *"flow banding"* (igneous), *"foliation"* or *"cleavage"* (metamorphic). Sedimentary layering is described as *"bedding"* or (where thickness < 20 mm) *"lamination"*. The typical orientation, spacing or thickness of these structural features can be described directly in millimetres and metres. Further quantification of bedding thickness applied by GHD is as follows:

Bedding Term	Thickness
Very thickly bedded	>2 m
Thickly bedded	0.6 to 2 m
Medium bedded	0.2 to 0.6 m
Thinly bedded	60 to 200 mm
Very thinly bedded	20 to 60 mm
Laminated	6 to 20 mm
Thinly laminated	<6 mm

Features, Inclusions and Minor Components are typically only described when those features could influence the engineering behaviour of the rock. Described features may include: gas bubbles in igneous rocks; veins of quartz, calcite or other minerals; pyrite crystals and nodules or bands of ironstone or carbonate; cross bedding in sandstone; clast or matrix support in conglomerates and breccia.

Moisture content may be described by the feel and appearance of the rock, as follows: "*dry*" (looks and feels dry), "*moist*" (feels cool, darkened in colour, but no water is visible on the surface), or "*wet*" (feels cool, darkened in colour, water film or droplets visible on the surface). The moisture content of rock cored with water may not represent in situ conditions.

Durability of rock samples is noted where there is an observed tendency of samples to crack, breakdown in water or otherwise deteriorate with exposure.

Specialist Services in Geotechnical Engineering, Geology, Field/Laboratory Testing and Hydrogeology www.ghd.com/Geotechnical

b) Classification of the rock material condition (strength, weathering and/or alteration)

Estimated Strength refers to the rock material and not the rock mass. The strength is defined in terms of uniaxial compressive strength (UCS), though is typically estimated by either tactile assessment or Point Load Strength Index ($Is_{(50)}$) (measured perpendicular to planar anisotropy). A correlation between $Is_{(50)}$ and UCS is adopted for classification, though is not intended for design purposes without appropriate supporting assessment. A field guide follows:

Term and (Symbol)		UCS (MPa)	Is ₍₅₀₎ (MPa)	Field Guide
Very Low	(VL)	0.6 – 2	0.03 - 0.1	Material crumbles under firm blows with sharp end of geological pick; can be peeled with knife; too hard to cut a triaxial sample by hand. Pieces up to 30 mm thick can be broken by finger pressure.
Low	(L)	2 - 6	0.1 - 0.3	Easily scored with knife; indentations 1 to 3 mm show in the specimen with firm blows of a geological pick point; has dull sound under hammer. A piece of core 150 mm long by 50 mm diameter may be broken by hand. Sharp edges of core may be friable and break during handling.
Medium	(M)	6 - 20	0.3 - 1.0	Readily scored with a knife; a piece of core 150 mm long by 50 mm diameter can be broken by hand with difficulty.
High	(H)	20 - 60	1 - 3	A piece of core 150 mm long by 50 mm diameter cannot be broken by hand but can be broken by a geological pick with a single firm blow; rock rings under hammer.
Very High	(VH)	60 - 200	3 -10	Hand specimen breaks with geological pick after more than one blow; rock rings under hammer.
Extremely High	(EH)	>200	>10	Specimen requires many blows with geological pick to break through intact material; rock rings under hammer.

Based on Table 19, Clause 6.2.4.1, AS 1726-2017, Geotechnical site investigations. Refer to source document for further detail.

Material with strength less than "very low" is described using soil characteristics, with the presence of an original rock texture or fabric noted if relevant.

Weathering and Alteration: The process of weathering involves physical and chemical changes to the rock resulting from exposure near the earth's surface. A subjective scale for weathering is applied as follows:

Weathering Term and (Symbol)		Description
Residual Soil	(RS)	Material has weathered to such an extent that it has soil properties. Mass structure and material texture and fabric of original rock are no longer visible, but the soil has not been significantly transported.
Extremely Weathered	(XW)	Material has weathered to such an extent that it has soil properties. Mass structure, material texture and fabric of original rock are still visible.
Highly Weathered	(HW)	The whole of the rock material is discoloured, usually by iron staining or bleaching to the extent that the colour of the original rock is not recognisable. Rock strength is significantly changed by weathering. Some primary minerals have weathered to clay minerals. Porosity may be increased by leaching, or may be decreased due to deposition of weathering products in pores.
Moderately Weathered	(MW)	The whole of the rock material is discoloured, usually by iron staining or bleaching to the extent that the colour of the original rock is not recognisable, but shows little or no change of strength from fresh rock.
Slightly Weathered	(SW)	Rock is partially discoloured with staining or bleaching along joints but shows little or no change of strength from fresh rock.
Fresh	(Fr)	Rock shows no sign of decomposition of individual minerals or colour changes.

Modified based on Table 20, Clause 6.2.4.2, AS 1726-2017, Geotechnical site investigations. Refer to source document for further detail.

Where physical and chemical changes to the rock are caused by hot gases or liquids at depth, the process is called alteration. Unlike weathering, the distribution of altered material may occur at any depth and show no relationship to topography. Where alteration minerals are identified the terms "extremely altered" (XA), "highly altered" (HA), "moderately altered" (MA) and "slightly altered" (SA) can be used to describe the physical and chemical changes described above.

Specialist Services in Geotechnical Engineering, Geology, Field/Laboratory Testing and Hydrogeology www.ghd.com/Geotechnical

c) Description of defects (defect type, orientation, roughness and shape, coatings and composition of seams, spacing, length, openness and thickness, block shape)

Defects often control the overall engineering behaviour of a rock mass. AS 1726 defines a defect as "a discontinuity, fracture, break or void in the material or materials across which there is little or no tensile strength". Describing the type, character and distribution of natural defects is an essential part of the description of many rock masses.

Commonly described characteristics of defects within a rock mass include type, orientation, roughness and shape, coatings and composition of seams, aperture, persistence, spacing and block shape.

The degree of detail required for defect descriptions depends on project requirements. All defects judged of engineering significance for the site and project are described individually. Where appropriate, generalised descriptions for less significant, or multiple similar, defects can be provided for delineated parts of rock core or exposures. A general description of delineated defect sets is provided when sufficient orientation data is available.

Defect Type is described using the terms summarised below. On core logs, only natural defects across which the core is discontinuous are described (i.e. inferred artificial fractures such as drill breaks are excluded). Incipient defects are described using the relevant texture or fabric terms. Healed defects (those that have been re-cemented by minerals such as chlorite or calcite) are described using the prefix "healed" (e.g. healed joint).

Type and (Syn	nbol)	Description	Diagram
Parting	(Pt)	A surface or crack across which the rock has little or no tensile strength. Parallel or sub-parallel to layering (e.g. bedding) or a planar anisotropy in the rock material (e.g. cleavage). May be open or closed.	
Joint	(Jt)	A surface or crack with no apparent shear displacement and across which the rock has little or no tensile strength, but which is not parallel or subparallel to layering or to planar anisotropy in the rock material. May be open or closed.	
Sheared Surface	(SS)	A near planar, curved or undulating surface which is usually smooth, polished or slickensided and which shows evidence of shear displacement.	
Sheared Zone	(SZ)	Zone of rock material with roughly parallel near planar, curved or undulating boundaries cut by closely spaced joints, sheared surfaces or other defects. Some of the defects are usually curved and intersect to divide the mass into lenticular or wedge-shaped blocks.	
Sheared Seam	(SSm)	Seam of soil material with roughly parallel almost planar boundaries, composed of soil materials with roughly parallel near planar, curved or undulating boundaries cut by closely spaced joints, sheared surfaces or other defects. Some of the defects are usually curved and intersect to divide the mass into lenticular or wedge-shaped blocks.	
Crushed Seam	(CSm)	Seam of soil material with roughly parallel almost planar boundaries, composed of disoriented, usually angular fragments of the host rock material which may be more weathered than the host rock. The seam has soil properties.	
Infilled Seam	(ISm)	Seam of soil material usually with distinct roughly parallel boundaries formed by the migration of soil into an open cavity or joint, infilled seams less than 1 mm thick may be described as a veneer or coating on a joint surface.	
Extremely Weathered Seam	(WSm)	Seam of soil material, often with gradational boundaries. Formed by weathering of the rock material in place.	Kan United Seam

Modified based on Table 22, Clause 6.2.5.2, AS 1726-2017, Geotechnical site investigations. Refer to source document for further detail.

Defect Orientation is recorded as the "dip" (maximum angle of the mean plane, measured from horizontal) and the "dip direction" (azimuth of the dip, measured clockwise from true north). Dip and dip direction is expressed in degrees, with two-digit and three-digit numbers respectively, separated by a slash (e.g. 45/090). For vertical boreholes, the defect dip is measured as the acute angle from horizontal. Rock core extracted from vertical boreholes is generally not oriented, so the dip direction cannot be directly measured. For non-oriented inclined boreholes, a defect "alpha" (α) angle is measured as the acute angle from the core axis. For vertical and non-oriented inclined boreholes, the dip direction can sometimes be estimated from the relationship of the defect to a well-defined site structure such as fabric. For oriented inclined boreholes, the measurement of the defect orientation is carried out and recorded in a form suited to the particular device being used and later processed to report true dip and dip direction.

GHD

Specialist Services in Geotechnical Engineering, Geology, Field/Laboratory Testing and Hydrogeology www.ghd.com/Geotechnical

Roughness and Shape of the defect surface combine to have significant influence on shear strength. Standard descriptions and abbreviations include:

Roughness (Symbo		Description
Very Rough	(VR)	Many large surface irregularities (amplitude generally more than 1 mm) Feels like, or coarser than very coarse sand paper.
Rough	(Rf)	Many small surface irregularities (amplitude generally less than 1 mm). Feels like fine to coarse sand paper.
Smooth	(So)	Smooth to touch. Few or no surface irregularities.
Polished	(Pol)	Shiny smooth surface.
Slickensided	(Slk)	Grooved or striated surface, usually polished.

Shape and (S	ymbol)	Description
Planar (Pln		The defect does not vary in orientation.
Curved	(Cu)	The defect has a gradual change in orientation.
Undulating	(Un)	The defect has a wavy surface.
Stepped	(St)	The defect has one or more well defined steps.
Irregular	(lr)	The defect has many sharp changes of orientation.

Although the surface roughness of defects can be described at small (10-100 mm) scales of observation, the overall shape of the defect surface can usually be observed only at medium (0.1-1 m) and large (>1 m)scale.

Where it is necessary to assess the shear strength of a defect, observations are generally made at multiple scales. Surface roughness may also be characterised by using the joint roughness coefficient (JRC) profiles established by Barton and Choubey (1977). Where large-scale observations are possible, further measurement of defect "waviness" (angle of the asperities relative to the overall dip angle of the plane) is made.

Coatings and Composition of Seams: Many defects have surface coatings, which can affect their shear strength. Standard descriptions include:

Coating and (Symbol)		Description	Common Minerals and (Symbol)	
Clean	(Cn)	No visible coating.	Clay	(CLAY)
Stained	(Sn)	No visible coating but surfaces are discoloured.	Calcite	(Ca)
Veneer	(Ve)	A visible coating of soil or mineral substance, but too thin to be	Carbonaceous	(X)
Veneer	(ve)	measured may be patchy.	Chlorite	(Kt)
		A visible coating up to 1 mm thick. Soil material greater than 1 mm	Iron Oxide	(Fe)
Coating	(Co)	thick is described using defect terms (e.g. infilled seam). Rock	Micaceous	(Mi)
	material greater than 1 mm thick is described as a vein (Vn).		Manganese	(Mn)
The composition	n of seal	Pyrite	(Py)	

The composition of seams are described using soil description terms as given on the SOIL DESCRIPTION AND CLASSIFICATION Standard Sheet. Where possible the mineralogy of coatings is identified. Common mineral coatings include:

Aperture: Defects across which there is little or no tensile strength can be either "open" (Op) or "closed" (Cl). For rock core, the width of the "open" defect is measured whilst still in the core barrel splits. The descriptor "tight" (Ti) can only apply to healed or incipient defects (i.e. veins, foliation, etc.).

Persistence and Spacing of defects is described directly in millimetres and metres. If the measurement of defect persistence is limited by the extent of the exposure, the end conditions are noted (i.e. 0, 1 or 2 defect ends observed). The spacing between defects of similar orientation (i.e. within a specific defect set) is recorded when possible.

The frequency of defects within rock core can be measured as either: the spacing between successive defects; or the "Fracture Index", which is the number of defects per metre of core.

Spacing Term	Thickness
Very wide	>2 m
Wide	0.6 to 2 m
Medium	0.2 to 0.6 m
Closely	60 to 200 mm
Very closely	20 to 60 mm
Extremely closely	6 to 20 mm

Quartz

(Qz)

Block Shape: Where it is considered significant, block shape can be described using the subjective terms as follows:

Block Shape	Description
Polyhedral	Irregular discontinuities without arrangement into distinct sets, and of small persistence.
Tabular	One dominant set of parallel discontinuities, for example bedding planes, with other non-continuous joints; thickness of blocks much less than length or width.
Prismatic	Two dominant sets of discontinuities, approximately orthogonal and parallel, with a third irregular set; thickness of blocks much less than length or width.
Equidimensional	Three dominant sets of discontinuities, approximately orthogonal, with occasional irregular joints, giving equidimensional blocks.
Rhomboidal	Three (or more) dominant, mutually oblique, sets of joints giving oblique-shaped, equidimensional blocks.
Columnar	Several, usually more than three sets of continuous, parallel joints usually crossed by irregular joints; lengths much greater than other dimensions.

Modified based on Table 23, Clause 6.2.5.7, AS 1726-2017, Geotechnical site investigations. Refer to source document for further detail.

Specialist Services in Geotechnical Engineering, Geology, Field/Laboratory Testing and Hydrogeology www.ghd.com/Geotechnical

L = 250 mm

L = 0

Extremely weathered

soundness requirement

E

Core run total length = 1.2

does not meet

d) Interpreted stratigraphic unit

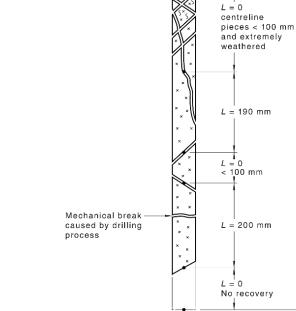
Stratigraphic units may be interpreted and reported, in accordance with The Australian Stratigraphic Units Database (ASUD). The terms "possibly" or "probably" indicate increased uncertainty in this interpretation.

e) Geological structure

After describing the rock material and defects, an interpretation of the nature and configuration of rock mass defects may be presented in logs, charts, 2D sections and 3D models (e.g. dipping strata, folds, unconformities, weathering profiles, defect sets, geological faults, etc.).

PARAMETERS RELATED TO CORE DRILLING

Drill Depth and Core Loss: Drilling intervals are shown on GHD Core Log Sheets by depth increments and horizontal marker lines.


"Core loss", or its inverse "total core recovery" (TCR), is measured as a percentage of the core run. If the location of the core loss is known, or strongly suspected, it is shown in a region of the column bounded by dashed horizontal lines. If unknown, core loss is assigned to the bottom of a core run.

Rock Quality Designation (RQD), described by Deere et al. (1989), may be recorded on GHD Core Log Sheets.

For certain projects, such as tunnelling or underground mining investigations, rock mass ratings or classifications can be required as part of the design process. The RQD forms a component of these rock mass ratings and provides a quantitative estimate of rock mass quality from rock core logs.

The rock core must be "N" sized (nominally 50 mm) or greater for derivation of RQD. The RQD is expressed as a percentage of intact rock core (excluding residual soil and extremely weathered rock) greater than 100 mm in length over the total selected core length.

Deere et al. (1989) recommends measuring lengths of core along the centreline, as shown right.

 $RQD = \frac{250 + 190 + 200}{1000} \times 100\%$

1200

= 53%

RQD measurement procedure (reproduced from Figure 13, Clause 6.2.9.4, AS 1726-2017, Geotechnical site investigations)

$$RQD = \frac{\sum Length \ of \ sound \ core \ pieces > 100 \ mm \ in \ length}{Length \ of \ core \ run} \ x \ 100\%$$

ROCK MASS CLASSIFICATION

Rock mass classification schemes may be used to represent the engineering characteristics of a rock mass. A large variety of classification schemes have been developed by various authors, ranging from simple to complex. All of the schemes are limited in their application and many rock mass classification systems assume that the rock mass is isotropic, which is rarely the case.

References

STANDARDS AUSTRALIA (2017). AS 1726-2017. GEOTECHNICAL SITE INVESTIGATIONS.

BARTON, N. AND CHOUBEY, V. (1977). THE SHEAR STRENGTH OF ROCK JOINTS IN THEORY AND PRACTICE. ROCK MECHANICS 10, 1-54. SPRINGER. DEERE, D.U. AND DEERE, D.W. (1989). ROCK QUALITY DESIGNATION (RQD) AFTER TWENTY YEARS. CONTRACT REPORT GL-89-1. ARMY CORPS OF ENGINEERS. WASHINGTON DC, 1989.

GLOSSARY OF SYMBOLS

GHD

Specialist Services in Geotechnical Engineering, Geology, Field/Laboratory Testing and Hydrogeology www.ghd.com/Geotechnical

This standard sheet should be read in conjunction with all test hole log sheets and any idealised geological sections prepared for the investigation report.

	GENERAL						
Symbol	Description	Symbol	Description				
D	Disturbed Sample	R	Rising Head Permeability Test				
В	Bulk Sample	F	Falling Head Permeability Test				
U(50)	Undisturbed Sampled (suffixed by sample size or tube diameter in mm if applicable)	PBT	Plate Bearing Test				
CS	Core Sample (suffixed by diameter in mm)	}	Water Inflow (make)				
ES	Soil sample for environmental sampling		Water Outflow (loss)				
PID	Photoionisation Detector	$\mathbf{\nabla}$	Temporary Water Level				
SPT	Standard Penetration Test (with blows per 0.15m)	V	Final Water Level				
Ν	SPT Value	•	Point Load Test (axial)				
HB/HW	SPT Hammer Bouncing/Hammer Weight	0	Point Load Test (diametric)				
PP/HP	Pocket/Hand Penetrometer (suffixed by value kPa)	PL	Point Load (kPa)				
РК	Packer Test (kPa)	IMP	Impression Device Test				
PZ	Piezometer Installation	РМ	Pressuremeter Test				
SV/VS	Shear Vane Test (suffixed by value in kPa)						

			SOIL S	SYMBOLS					
Main C	omponents		Minor (Components					
	SAND	FILL		sandy	x x x x	vege	tation, root	S	
000	GRAVEL	SILT	0000	gravelly		silty			
	CLAY	TOPSOIL		clayey			s are genera onstituents, e	· ·	CLAY
			ROCK	SYMBOLS					
Sedime	entary					Igneous			
	SANDSTONE	SILTSTONE		CONGLOME	RATE	+ + + + + +	GRANITI C ROCK	==	IGNEOUS
	CLAYSTONE	SHALE		COAL		\bigotimes	BASALT IC ROCK		DYKE

Note: Additional rock symbols may be allocated for a particular project

NATURAL DEFECTS (Coding)

Defect	Туре		Orientatio	n								
Jt	Joint		For vertica	l non-o	riented core	"Dip" angle (eg. 5°) measured relative to horizontal.						
Pt	Parting		For incline	d non-o	priented core	"Angle	" measured relative to	core axi	S.			
SS	Sheared Su	urface	For incline	d orien	ted core "I	Dip" angle	and "Dip Direction" an	gle (eg.	45°/225° mag.).			
WSm	Weathered	Seam	Orientatio	n (con	't)	Rough	ness	Coating				
SSm	Sheared Se	eam	VT	Verti	cal	Pol	Polished	Cn	Clean			
CSm	Crushed Se	eam	HZ or 0°	Horiz	ontal	So	Smooth	Sn	Stained			
ISm	Infilled Sear	m	d / °	Degr	ees	Rf	Rough	Ve	Veneer			
SZ	Sheared Zo	one				VR	Very Rough	Со	Coating			
VN	Vein					Slk	Slickensided					
Shape						Infilling	g / Common Materials					
Pln	Planar		St	Step	bed	CLAY	Clay	Mi	Micaceous			
Cu	Curved		Ir	Irreg	ular	Са	Calcite	Mn	Manganese			
Un	Undulating		Dis	Disco	ontinuous	X	Carbonaceous	Ру	Pyrite			
Others						Kt	Chlorite	Qz	Quartz			
OP	Open	CL	Closed	Ti	Tight	Fe	Iron Oxide	MU	Unidentified Mineral			

Specialist Services in Geotechnical Engineering, Geology, Field/Laboratory Testing and Hydrogeology www.ghd.com/Geotechnical

GENERAL

Samples extracted during the fieldwork stage of a site investigation may be "disturbed" or "undisturbed" (as generally indicated on the test hole logs) depending upon the nature and purpose of the sample as well as the method of extraction, transportation, extrusion and testing. This aspect should be taken into account when assessing test results, which must of necessity, reflect the effects of such disturbance.

All soil properties (as measured by laboratory testing) exhibit inherent variability and thus a certain statistical number of tests is required in order to predict an average property with any degree of confidence. The site variability of soil strata, future changes in moisture and other conditions and the discrete sampling positions must also be considered when assessing the representative nature of the laboratory programme.

Certain laboratory test results provide interpreted soil properties as derived by conventional mathematical procedures. The applicability of such properties to engineering design must be assessed with due regard to the site, sample condition, procedure and project in hand.

TESTING

Laboratory testing is normally carried out in accordance with Australian Standard AS 1289 as amended, or in NSW, Roads and Maritime Services (RMS) standards when specified. The routine Australian Standard tests are as follows: Moisture Content AS1289 2.1.1

	A01203 2.1.1	
Liquid Limit	AS1289 3.1.1	
Plastic Limit	AS1289 3.2.1	collectively known as Atterberg Limits
Plasticity Index	AS1289 3.3.1	
Linear Shrinkage	AS1289 3.4.1	
Particle Density	AS1289 3.5.1	
Particle Size Distribution	AS1289 3.6.1, 3.6.2 and 3.6.3	
Emerson Class Number	AS1289 3.8.1	
Percent Dispersion	AS1289 3.8.2	collectively, Dispersive Classification
Pinhole Dispersion Classification	AS1289 3.8.3	
Hole Erosion (HE)	GHD Method	
No Erosion Filter (NEF)	GHD Method	
Organic Matter	AS1289 4.1.1	
Sulphate Content	AS1289 4.2.1	
pH Value	AS1289 4.3.1	
Resistivity	AS1289 4.4.1	
Standard Compaction	AS1289 5.1.1	
Modified Compaction	AS1289 5.2.1	
Dry Density Ratio	AS1289 5.4.1	
Minimum Density	AS1289 5.5.1	
Density Index	AS1289 5.6.1	
California Bearing Ratio	AS1289 6.1.1 and 6.1.2	
Shear Box	AS1289 6.2.2	
Undrained Triaxial Shear	AS1289 6.4.1 and 6.4.2	
One Dimensional Consolidation	AS1289 6.6.1	
Permeability Testing	AS1289 6.7.1, 6.7.2 and 6.7.3	

Where tests are used which are not covered by appropriate standard procedures, details are given in the report.

LABORATORIES

Our Australian laboratories are NATA accredited to AS ISO / IEC17025 for the listed tests.

The oedometer, triaxial and shear box equipment are fully automated for continuous operation using computer controlled data acquisition, processing and plotting systems.

Appendix B – Figures

75m 50

GHI

Plot Date: 18 December 2020 - 11:25 PM Plotted by: Laurence Gae Posadas

LEGEND

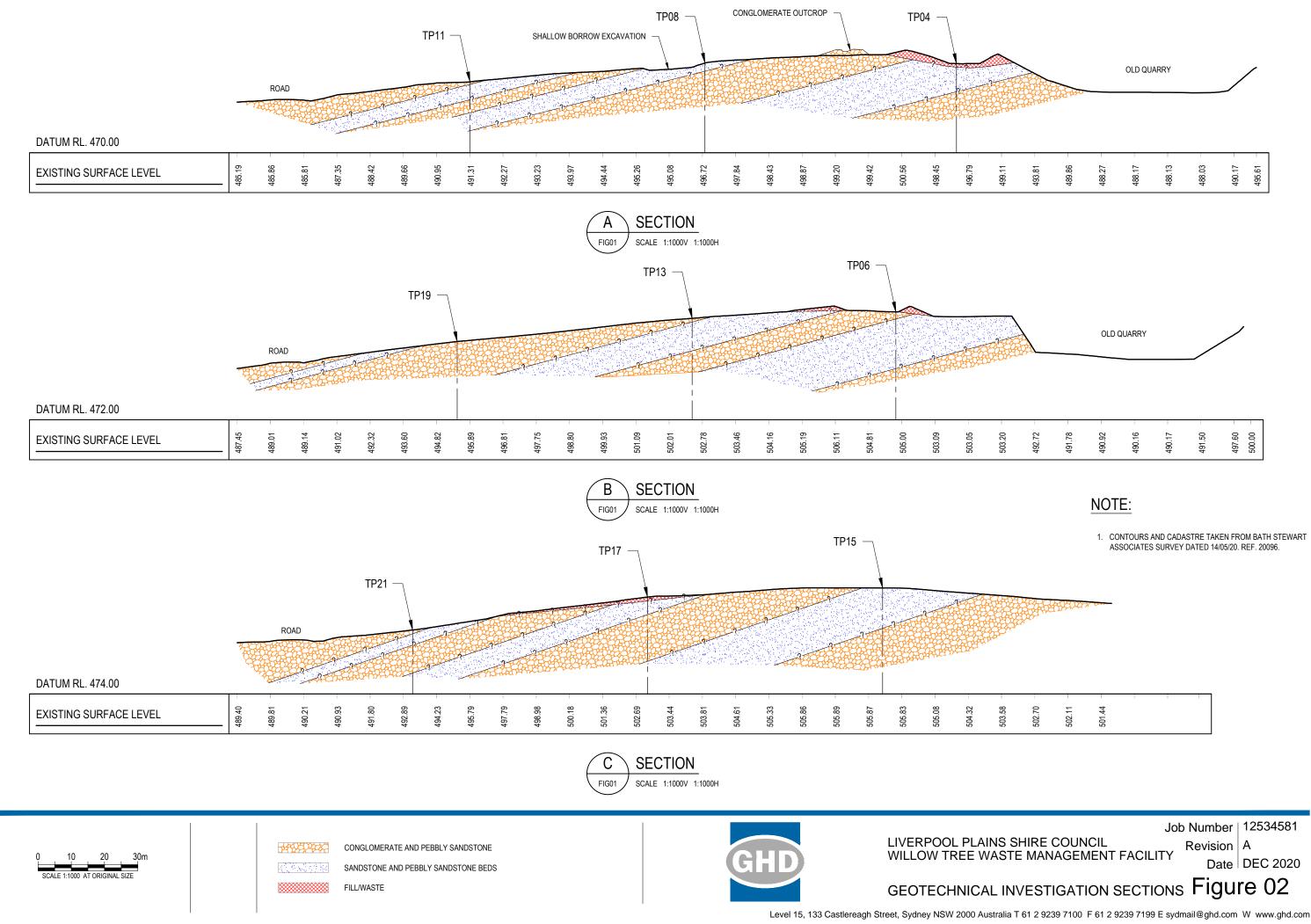
EXISTING CONTOURS m A.H.D

TEST PIT LOCATIONS

CADASTRE

NOTE:

1. CONTOURS AND CADASTRE TAKEN FROM BATH STEWART ASSOCIATES SURVEY DATED 14/05/20. REF. 20096.


LIVERPOOL PLAINS SHIRE COUNCIL WILLOW TREE WASTE MANAGEMENT FACILITY

Job Number | 12534581 Revision A Date DEC 2020

Figure 01

GEOTECHNICAL INVESTIGATION PLAN

Level 15, 133 Castlereagh Street, Sydney NSW 2000 Australia T 61 2 9239 7100 F 61 2 9239 7199 E sydmail@ghd.com W www.ghd.com

Cad File No: C:\Users\lcpos esktop\Working - LPSC - Willow Tree Regional Landfill Facility\12534581-FIG02.dw

Appendix C – Test Pit Logs and Photographs

-	nt : ject : ation :	Willo	ow Tre	Plains Shir e Waste I oad, Willo	Manage	ment f	Facility			HOLE N	0.		01 ET 1 OF 1
Pos	ition :	Refe	er to tes	st location avator SK WR	plan			Surface RL: 485.2m Contractor :	AHD	Angle from Horiz. : 90 Driller :	0		Processed : HAL Checked : SJM
Date	e Starte	e d: 4	/12/20	20		Dat	te Com	pleted: 4/12/2020		Logged by : S. Mackenz	zie		Date: 18/12/2020
	ſ	DRILLI	NG					MAT	FERIAL				Note: * indicates signatures on or issue of log or last revision of l
SCALE (m)	Drilling Method	Hole Support \ Casing	Water	Samples & Tests	Depth metres	Graphic Log	USC Symbol	SOIL NAME: plasticity / prim and minor co ROCK NAME: grain size,	ary particle ch mponents, zo colour, fabric	n L/TOPSOIL] then aracteristics, colour, secondary ning (origin) and / texture, inclusions or minor thering / alteration, defects	Moisture Condition	Consistency / Density Index	Comments/ Observations
					0.30		-	[FILL]: Sandy GRAVEL plastic, metal, rubber h	: fine to coa ose, roots.	arse, brown, with waste,	D	-	Appears loose.
							-	[FILL]: Gravelly CLAY: roots.	red brown,	with sand, metal pieces,	М	-	Appears well compacted.
1			Nil		0.50		GC	Clayey GRAVEL: fine t (residual).	o coarse, w	ith sand, red brown	M	VD	
					1.20		-	CONGLOMERATE/PE medium, pale grey, witi extremely weathered s as CLAY with sand, tra	h iron staini andstone in	ng, very low strength, terbedding? (excavates	-	-	
				D	1.90			1.8m, becoming higher	-				
2								End of borehole at 1.90 Practical Refusal	J Metres.				
3													
det	e stanc ails of asis o	abbre	eviatio	ons [HD	GHI Level T: +6	3, GHD)) Tower, 24 Honeysuckle Driv '9 9999 F: +61 2 4979 998	ve, Newcastle 8 E: ntlmail	e 2300 Australia @ghd.com	J	ob N	No. 12534581

ВС	DREHOL	E LOG	SHE	ET								
Cli	ient : oiect :			Plains Shir			acility	HOLE N	о.	TP	02	
	oject : cation :			e Waste N oad, Willo	-		acility				ET 1 OF 1	
Po	sition :			st location p				Surface RL: 488.8m AHD Angle from Horiz. : 90		-	Processed : HAL	
Ri	g Type :			avator SKWB5		r		Contractor : Driller :			Checked : SJM	
Da	ite Start				-		e Com	bleted : 3/12/2020 Logged by : S. Mackenz	ie		Date: 18/12/2020	
		DRILLI						MATERIAL			Note: * indicates signatures on origina issue of log or last revision of log	
				(0				Description	uo		Comments/	
SCALE (m)	Drilling Method	Hole Support \ Casing	Water	Samples & Tests	Depth metres	Graphic Log	USC Symbol	[COBBLES/BOULDERS/FILL/TOPSOIL] then SOIL NAME: plasticity / primary particle characteristics, colour, secondary and minor components, zoning (origin) and ROCK NAME: grain size, colour, fabric / texture, inclusions or minor components, durability, strength, weathering / alteration, defects	Moisture Condition	Consistency / Density Index	Observations	
			Nil		0.30		-	[FILL]: GRAVEL: fine to coarse, rounded, red brown, with sand, trace fines. [FILL]: REFUSE WASTE: sheet metal/corrugated iron? or thinner.	D	-	Appears well compacted.	
- -					0.50	***		End of borehole at 0.50 metres. Auger binding up on rubbish not able to turn. Practical Refusal				
- - -1												
-												
- -												
-												
-2 - -												
-												
-												
-3 - - -												
L												
6-	e stan	lard c	hooto	for F		GHI	ר			ob N	No.	
de	e stand tails of basis o	viati	ons 🧲	HD	Level T: +6	I 3, GHD Tower, 24 Honeysuckle Drive, Newcastle 2300 Australia 61 2 4979 9999 F: +61 2 4979 9988 E: ntlmail@ghd.com NSULTING GEOTECHNICAL ENGINEERS AND GEOLOGISTS				12534581		

В	OREHO	E LOO	G SHE	ET										
C	lient :		•	Plains Shir				HOLE N	^	тр	03			
52/1	roject :			ee Waste N	-		acility							
	ocation			Road, Willo		NSW				SHEE	T 1 OF 1			
P 00.7	osition :			st location				Surface RL: 493.3m AHD Angle from Horiz. : 90°			Processed : HAL			
	ig Type			cavator SKWRG	watage			Contractor : Driller :			Checked : SJM			
	ate Star	ed: 3	/12/20	J20		Dat	e Com	Logged by : S. Mackenz	le		Date: 18/12/2020 Note: * indicates signatures on original			
0		DRILL	ING					MATERIAL			Note: * indicates signatures on original issue of log or last revision of log			
rree.gpJ GHD_GE	Drilling Method	upport g		es & Tests		c Log	ymbol	Description [COBBLES/BOULDERS/FILL/TOPSOIL] then SOIL NAME: plasticity / primary particle characteristic, colour, secondary	Moisture Condition	Consistency / Density Index	Comments/ Observations			
534581 WILLOW TREE.	Drilling	Hole Support \ Casing	Water	Samples &	Depth metres	 Graphic Log 	- USC Symbol	and minor components, zoning (origin) and ROCK NAME: grain size, colour, fabric / texture, inclusions or minor components, durability, strength, weathering / alteration, defects	Moistu	Consis Density				
GEO_BOREHOLE_AS1726.2017 12534581 WILLOW TREE.GPJ GHD_GEO_TEMPLATE 2.00.GDT 22/12/20 SCALE (៣)			Nil	В	0.60			CONGLOMERATE/PEBBLY SANDSTONE: medium to coarse, orange brown, very low strength, extremely weathered (excavates as Clayey Sandy GRAVEL, medium to coarse).	-	-	-			
⊕ - - - - - - - - - - - - - - - - - - -					0.60			End of borehole at 0.60 metres. Practical Refusal						
- -3 - - -											-			
9	ee stan	dard s	sheet	s for		GHI)		J	ob N	lo.			
_	etails of				HD	Level	3. GHD) Tower, 24 Honeysuckle Drive, Newcastle 2300 Australia						
	basis o			ons 🛛 🎽		T: +61 2 4979 9999 F: +61 2 4979 9988 E: ntlmail@ghd.com CONSULTING GEOTECHNICAL ENGINEERS AND GEOLOGISTS					12534581			

BC	OREHOL	E LOC	SHE	ET									
	ient :		•	Plains Shir				HOLE N	^	ТР	04		
Pr	oject :			ee Waste N	-		acility						
	cation :			load, Willo		NSW		Surface Div 407.0m AllD Angle from Havin + 000		SHEI	ET 1 OF 1		
	sition : g Type :			st location p avator SK WR	-	r		Surface RL: 497.0m AHD Angle from Horiz.: 90° Contractor: Driller:			Processed : HAL Checked : SJM		
	ate Start				unityt		te Com	pleted : 4/12/2020 Logged by : S. Mackenz	ie		Date: 18/12/2020		
F						24			-		Note: * indicates signatures on origina issue of log or last revision of log		
	1	DRILL	ING	1			I	MATERIAL		1			
SCALE (m)	Drilling Method	Hole Support \ Casing	Water	Samples & Tests	Depth metres	Graphic Log	USC Symbol	Description [COBBLES/BOULDERS/FILL/TOPSOIL] then SOIL NAME: plasticity / primary particle characteristics, colour, secondary and minor components, zoning (origin) and ROCK NAME: grain size, colour, fabric / texture, inclusions or minor components, durability, strength, weathering / alteration, defects	Moisture Condition	Consistency / Density Index	Comments/ Observations		
			IJ				-	[FILL]: WASTE: bricks, bottles, metal, slag, wire. ~0.1m, soil cover also containing waste.	D	-	Appears poorly compacted		
- - - - - - - - - - - - - - - - - - -					0.60			End of borehole at 0.60 metres. Auger binding up in waste. Practical Refusal					
- - -3 - - -													
de	ee stan etails of basis o	abbr	eviati	ons 🤆	HD	T: +6	D I 3, GHD Tower, 24 Honeysuckle Drive, Newcastle 2300 Australia 61 2 4979 9999 F: +61 2 4979 9988 E: ntlmail@ghd.com NSULTING GEOTECHNICAL ENGINEERS AND GEOLOGISTS				Job No. 12534581		

ool Plains Shire Coun			05
-	Inchi i aciity		
		SHEE	T 1 OF 1
-	-		Processed : HAL
		-	Checked : SJM
		e	Date: 18/12/2020 Note: * indicates signatures on original issue of log or last revision of log
G	MATERIAL		issue of log or last revision of log
Tests		ondition //	Comments/ Observations
Water Samples & . Depth metres	SOIL NAME: plasticity / primary particle characteristics, colour, secondary and minor components, zoning (origin) and ROCK NAME: grain size, colour, fabric / texture, inclusions or minor components, durability, strength, weathering / alteration, defects	Moisture Co Consistency Density Inde	
ĒD	- SANDSTONE: medium grained, orange brown, medium strength, highly weathered.		
eets for viations	GHD Level 3, GHD Tower, 24 Honeysuckle Drive, Newcastle 2300 Australia T: +61 2 4979 9999 F: +61 2 4979 9988 E: ntlmail@ghd.com	Job N	
	eets for	Price Waste Management Facility A Road, Willow Tree, INSU to a Road, Willow Tree, INSU to test location plan be stroked to plan	Put Tex Waste Maragement Facility Status Mulliov Tree, NSW Status Mulliov Tree, NSW Disclostonic plan Surface RL: 504.0m AHD Angle from Hortz: :::::::::::::::::::::::::::::::::::

BC	DREHO	E LOC	S SHEE	ET							
Cli	ient :	Live	rpool F	Plains Shii	re Coun	cil			•	тр	06
Pro	oject :			e Waste I	-		acility				
, Lo	cation			oad, Willo		NSW				SHEE	T 1 OF 1
PO	sition :			st location				Surface RL: 504.0m AHD Angle from Horiz. : 90°			Processed : HAL
	g Type			avator SK WR:	bunthige			Contractor : Driller :			Checked : SJM
	te Star			20		Dat	le Com	Logged by : S. Mackenzi	e		Date: 18/12/2020 Note: * indicates signatures on origina issue of log or last revision of log
		DRILL	ING					MATERIAL			issue of log or last revision of log
SCALE (m)	Drilling Method	Hole Support \ Casing	Water	Samples & Tests	Depth metres	Graphic Log	USC Symbol	Description [COBBLES/BOULDERS/FILL/TOPSOIL] then SOIL NAME: plasticity / primary particle characteristics, colour, secondary and minor components, zoning (origin) and ROCK NAME: grain size, colour, fabric / texture, inclusions or minor components, durability, strength, weathering / alteration, defects	Moisture Condition	Consistency / Density Index	Comments/ Observations
			Ni		0.10			SANDSTONE: fine to coarse grained, pale grey with red brown iron staining, with fine to medium pebbles, medium to high strength, moderately weathered. End of borehole at 0.10 metres. Practical Refusal			
de	e stan tails o basis o	fabbr	eviatio	ons 🤆	HD	T: +6	3, GHD 1 2 497) Tower, 24 Honeysuckle Drive, Newcastle 2300 Australia '9 9999 F: +61 2 4979 9988 E: ntlmail@ghd.com NG GEOTECHNICAL ENGINEERS AND GEOLOGISTS	J	ob N	lo. 12534581

В	OREHO	E LOC	G SHE	ET							
/12/20	lient : roject :		•	Plains Shir ee Waste N			acility	HOLE N	о.	TP	07
	ocation			load, Willo	-		aciiity			SHEE	ET 1 OF 1
0.00 0.00 0.00	osition :			st location				Surface RL: 502.0m AHD Angle from Horiz. : 90°			Processed : HAL
ĭ ₽ ₽	ig Type			avator SKWB		r		Contractor : Driller :			Checked : SJM
D D	ate Star						e Com	pleted: 3/12/2020 Logged by : S. Mackenz	ie		Date: 18/12/2020
		DRILL	ING					MATERIAL			Note: * indicates signatures on original issue of log or last revision of log
HD GEO			ING					Description	u		Comments/
S81 WILLOW TREE.GPJ G SCALE (m)	Drilling Method	Hole Support \ Casing	Water	Samples & Tests	Depth metres	Graphic Log	USC Symbol	[COBBLES/BOULDERS/FILL/TOPSOIL] then SOIL NAME: plasticity / primary particle characteristics, colour, secondary and minor components, zoning (origin) and ROCK NAME: grain size, colour, fabric / texture, inclusions or minor components, durability, strength, weathering / alteration, defects	Moisture Condition	Consistency / Density Index	Observations
			NI		0.30		-	 [FILL]: Sandy GRAVEL: dark brown to brown mottled, with roots, wire rope, metal parts. CONGLOMERATE/PEBBLY SANDSTONE: fine to medium, pale grey, low strength, extremely to moderately weathered (excavates as Sandy GRAVEL, fine to medium, with fines). 0.9m, becoming stronger (harder drilling resistance). End of borehole at 1.00 metres. 	-	-	Appears loose.
- - - - - - - - - - - - - - - - - - -								Practical Refusal			
d	ee stan etails o	abbr	eviati	ons 🤆	HD	GHI Level T: +6	3. GHD	¹ Tower, 24 Honeysuckle Drive, Newcastle 2300 Australia 9 9999 F: +61 2 4979 9988 E: ntlmail@ghd.com	J	ob N	
d		abbr	eviati	ons 🤆	HD	Level T: +6	3, GHD 1 2 497	Tower, 24 Honeysuckle Drive, Newcastle 2300 Australia 9 9999 F: +61 2 4979 9988 E: ntlmail@ghd.com NG GEOTECHNICAL ENGINEERS AND GEOLOGISTS	J		1253458

E	OREHO		G SHE	ET										
^{2/2} 0	lient :			Plains Shi						ΤР	08			
F 122	roject :			ee Waste I	-		acility							
	ocation			Road, Willo		NSW				SHEE	ET 1 OF 1			
9 9 5	Position :			st location	-			Surface RL: 497.0m AHD Angle from Horiz. : 90°			Processed : HAL			
	Rig Type			avator SKWR	bontange			Contractor : Driller :			Checked : SJM			
	ate Star	ted: 3	/12/20)20		Dat	te Com	pleted : 3/12/2020 Logged by : S. Mackenzi	e		Date: 18/12/2020 Note: * indicates signatures on original			
0		DRILL	ING					MATERIAL			Note: * indicates signatures on original issue of log or last revision of log			
REE.GPJ GHD_GE	Vethod	pport		s & Tests		Log	mbol	Description [COBBLES/BOULDERS/FILL/TOPSOIL] then SOIL NAME: plasticity / primary particle characteristics, colour, secondary	e Condition	ency / Index	Comments/ Observations			
34581 WILLOW TREE.	Drilling Method	Hole Support \ Casing	Water	Samples &	Depth metres	Graphic Log	- USC Symbol	and minor components, zoning (origin) and ROCK NAME: grain size, colour, fabric / texture, inclusions or minor components, durability, strength, weathering / alteration, defects SANDSTONE: fine grained, pale brown with iron staining	Moisture	Consistency / Density Index				
GEO_BOREHOLE_AS1726 2017 12534581 WILLOW TREE.GPJ GHD_GEO_TEMPLATE 2.00.GDT 22/12/20			Nil	D (cobble)	0.60		-	bedded at ~40-100mm thickness, medium strength, moderately weathered (excavates as sandstone cobbles and gravel).	-	-				
- - - - 1 -					0.00			End of borehole at 0.60 metres. Practical Refusal			-			
-														
- -2 -											-			
- - - - - - - - - -											-			
ŀ														
	see star	dard e	sheet	s for		GHI	D		J	ob N	lo.			
d	letails o	f abbr	eviati	ons 🧿	HD	Level 3, GHD Tower, 24 Honeysuckle Drive, Newcastle 2300 Australia T: +61 2 4979 9999 F: +61 2 4979 9988 E: ntlmail@ghd.com 125345								
8	k basis	of des	criptio			CONSULTING GEOTECHNICAL ENGINEERS AND GEOLOGISTS					12534581			

Open International Processing ProcestangeProcesprocesing Processing Processing Processing Processing	BOREHOLE LOG SHEET			
United Shock (Willow Tee, NSW) SHEET 1 0F 1 Bittor: Index to location plan Contractor: United Contractor: Driller: Checked: Sharbes PL: 400.4m AHD Angle from Horiz:: 00' Proceed:: AUX000 DDRULING Date Completed: 31/2/2/02 Lagged by : St. Mackenzie Discription:	•	HOLE		200
estorie for the location plan between the lo		nent'i delity		
g Type: Koleck Disease 3988 Contractor: Driller: Cloged by : S. Mackenzie Dise: Bits: 18/12/200 DBLUNS MATERIAL Dise: Dise::				
Bit Bitshet :: 2012/2020 Date Completed :: 3112/2020 Date:: 1112/2020 DRILLING NATERAL NATERAL Distribution (111/2020) Matching (111/2020) Image: State of the s		-	0°	
DRILLING MATERIAL Material Togot () Use of the state of the stat				
Distance Distance <th< th=""><th>Date Started : 3/12/2020</th><th>Date Completed : 3/12/2020 Logged by : S. Macke</th><th>nzie</th><th></th></th<>	Date Started : 3/12/2020	Date Completed : 3/12/2020 Logged by : S. Macke	nzie	
under the standard sheets for this of oblive/starts EP EP </th <th>DRILLING</th> <th>MATERIAL</th> <th></th> <th>issue of log or last revision of log</th>	DRILLING	MATERIAL		issue of log or last revision of log
e standard sheets for table 200 CPU	SCALE (m) Drilling Method Hole Support (Casing Water Samples & Tests Depth metres		oisture Condition onsistency / ensity Index	Observations
Practical Refusal Practical Refusal Practical Refusal Practical Refusal Description Practical Refusal	₩ III III IIII IIII IIIIIIIIIIIIIIIIII	CONGLOMERATE: fine to medium, pale grey and red brown iron stained, very low strength, extremely weathered (excavates as GRAVEL with fines and sand (GP).		
Level 3, GHD Tower, 24 Honeysuckle Drive, Newcastle 2300 Australia	-2			
Level 3, GHD Tower, 24 Honeysuckle Drive, Newcastle 2300 Australia	.3			
T +61 2 4979 9999 F +61 2 4979 9988 F ntlmail@ghd.com		Level 3. GHD Tower. 24 Honevsuckle Drive. Newcastle 2300 Australia		110.
basis of descriptions CONSULTING GEOTECHNICAL ENGINEERS AND GEOLOGISTS	& basis of descriptions	T: +61 2 4979 9999 F: +61 2 4979 9988 E: ntlmail@ghd.com		12534581

BORE	HOLE	E LOG S	SHEE	T							
Client	t :	Liverp	ool P	Plains Shir	e Coun	cil			^	ТЕ	010
Projec				e Waste N	-		acility				
Locat				ad, Willov		NSW				SHE	ET 1 OF 1
Positi				t location p				Surface RL: 485.6m AHD Angle from Horiz. : 90°	,		Processed : AJET
Rig Ty				vator SKWB5	GREANGE			Contractor : Driller :			Checked : SJM
Date S	Starte	d: 4/12	2/202	20		Dat	e Com	pleted : 4/12/2020 Logged by : S. Mackenz	ie		Date: 18/12/2020 Note: * indicates signatures on origina
	D	RILLIN	G					MATERIAL			issue of log or last revision of log
(m)	Method	pport		s & Tests		Log	mbol	Description [COBBLES/BOULDERS/FILL/TOPSOIL] then SOIL NAME: plasticity / primary particle characteristics, colour, secondary	e Condition	ency / Index	Comments/ Observations
SCALE (m)	Drilling Method	Hole Support \ Casing	Water	Samples &	Depth metres	Graphic Log	C Symbol	and minor components, zoning (origin) and ROCK NAME: grain size, colour, fabric / texture, inclusions or minor components, durability, strength, weathering / alteration, defects		Consistency /	
-				D	0.30		SC	Clayey Gravelly SAND: red brown, fine to medium, with roots (residual).	D	VD	
-			Nil				-	CONGLOMERATE: fine to medium, pale grey with red brown iron staining, very low strength, extremely weathered (excavates as Sandy GRAVEL, fine to medium, with fines, with roots).	-	-	
-1					1.10			1.0m, becoming higher strength, increased drilling resistance and larger clasts.			
- 2 2 2								Practical Refusal			
detail	ls of	ard she abbrev descri	iatio	ns C	HD	T: +6	3, GHD 1 2 497	Tower, 24 Honeysuckle Drive, Newcastle 2300 Australia 9 9999 F: +61 2 4979 9988 E: ntlmail@ghd.com NG GEOTECHNICAL ENGINEERS AND GEOLOGISTS	J	obl	No. 12534581

BC	DREHOL	E LOC	SHEE	ET									
Cli	ient :		•	Plains Shii						HOLE N	0	ΤР	11
Pr	oject :			e Waste I	-		acility						
Lo	cation :			oad, Willo		NSW						SHE	ET 1 OF 1
Po	sition :			st location	-			Surface RL: 491.3m	AHD	Angle from Horiz. : 90			Processed : AJET
Rig	g Type :			avator SKWR	buntange			Contractor :		Driller :			Checked : SJM
Da	te Start	ed: 3	/12/20	20		Dat	te Com	pleted: 3/12/2020		Logged by : S. Mackenz	le		Date: 18/12/2020 Note: * indicates signatures on origina
		DRILL	ING					MATE	ERIAL				issue of log or last revision of log
	Drilling Method	Hole Support \ Casing	Water	Samples & Tests	Depth metres	Graphic Log	USC Symbol	[COBBLES/BOL SOIL NAME: plasticity / primar and minor com ROCK NAME: grain size, co	ry particle ch iponents, zo olour, fabric	L/TOPSOIL] then aracteristics, colour, secondary ning (origin) and / texture, inclusions or minor thering / alteration, defects	Moisture Condition	Consistency / Density Index	Comments/ Observations
_							-	[FILL]: CRUSHED ROCI	K: medium	n grained, dark grey.	D	-	Appears loose
┢					0.15		GC	Clayey Sandy GRAVEL: (residual).	fine to me	edium, red brown	D	VD	-
-			Nil		0.30		-	CONGLOMERATE/PEB medium, pale grey with i extremely weathered (ex fines).	iron stainir kcavates a	ng, very low strength, is Sandy GRAVEL, with	-	-	
- 1 - 1 								End of borehole at 0.70 Practical Refusal					
Se	e stan	dard s	heets	for		GHI					J	ob N	l lo.
de	tails of basis of	abbr	eviatio	ons 🧿	HD	Level T: +6	3, GHD 31 2 497	Tower, 24 Honeysuckle Drive 9 9999 F: +61 2 4979 9988 NG GEOTECHNICAL EN	E: ntlmail	@ghd.com			12534581

BC	DREHO	E LOO	G SHE	ET							
	ient :	Live	rpool	Plains Shir	re Coun	cil		HOLE N	0	тр	12
727 Pr	oject :			ee Waste N	-		acility				
	cation			load, Willo		NSW				SHEE	T 1 OF 1
09 PC	sition :			st location				Surface RL: 497.2m AHD Angle from Horiz.: 90			Processed : AJET
	g Type :			avator SKWR	wattinge			Contractor : Driller :			Checked : SJM
	te Start	ed: 3	/12/20)20		Dat	te Com	Impleted : 3/12/2020 Logged by : S. Mackenz	le		Date: 18/12/2020 Note: * indicates signatures on original
0		DRILL	ING					MATERIAL			Note: * indicates signatures on original issue of log or last revision of log
GHD_GE				sts				Description	tion		Comments/ Observations
	Drilling Method	Hole Support \ Casing	Water	Samples & Tests	Depth metres	Graphic Log	USC Symbol	[COBBLES/BOULDERS/FILL/TOPSOIL] then SOIL NAME: plasticity / primary particle characteristics, colour, secondary and minor components, zoning (origin) and ROCK NAME: grain size, colour, fabric / texture, inclusions or minor components, durability, strength, weathering / alteration, defects	Moisture Condition	Consistency / Density Index	
1726 2017 125345							GC	Clayey Sandy GRAVEL: fine to medium, red brown (residual).	D	VD	
GEO BOREHOLE AS			Nil		0.30		-	CONGLOMERATE/PEBBLY SANDSTONE: fine to medium, pale grey with red brown iron staining, extremely weathered, very low strength (excavates as Sandy GRAVEL, with fines).	-	-	
-1								4 One has a size has been been been been a linear to see the			
					1.10	663		1.0m, becoming harder, low to medium strength. End of borehole at 1.10 metres.			
- - - - - - - - - - - - - -											
- - -3 - - -											
	e stan etails of				HD		3, GHD) Tower, 24 Honeysuckle Drive, Newcastle 2300 Australia	J	ob N	
	basis o							79 9999 F: +61 2 4979 9988 E: ntlmail@ghd.com NG GEOTECHNICAL ENGINEERS AND GEOLOGISTS			12534581

Client : Project :			Plains Shi e Waste I			acilitv			HOLE N	о.	TP	13
Location :			oad, Willo	-		aomy					SHE	ET 1 OF 1
Position :			st location				Surface RL: 502.5m	AHD	Angle from Horiz. : 90°	>		Processed : AJE
Rig Type :					r		Contractor :		Driller :			Checked : SJM
Date Starte						e Com	pleted : 3/12/2020		ogged by : S. Mackenz	ie		Date: 18/12/2020
							-		- 33)			Note: * indicates signatures on or issue of log or last revision of l
	DRILLI	NG					MAII	ERIAL				
SUALE (m) Drilling Method	Hole Support \Casing	Water	Samples & Tests	Depth metres	Graphic Log	USC Symbol	[COBBLES/BOU SOIL NAME: plasticity / prima	iponents, zoning olour, fabric / tex	teristics, colour, secondary (origin) and ture, inclusions or minor	Moisture Condition	Consistency / Densitv Index	Comments/ Observations
1		Ni	В	0.05 1.50 1.60		-	[TOPSOIL]: Leaf litter. CONGLOMERATE PEE medium, pale grey with strength, extremely wea with gravel (CL).	red brown iror thered (excav hed, orange bi ed.	n staining, very low ates as Sandy CLAY	- -	-	Consistently hard drilling resistance.
2							End of borehole at 1.60 Practical Refusal	metres.				
3												
details of) Tower, 24 Honeysuckle Drive 9 9999 F: +61 2 4979 9988 NG GEOTECHNICAL EN	E: ntlmail@gl	nd.com	J	lob l	No. 12534581

	ent : ject :		•	Plains Shi e Waste I			acility	HOLE	No.	TF	P14
	ation :			ad, Willo	-		-aciiity				ET 1 OF 1
	ation :			t location		11311		Surface RL: 506.0m AHD Angle from Horiz. : 9	٥°		Processed : AJE
						-			0		Checked : SJM
-				vator SKWR	эониниде						
Dat	e Stari	ed: 3/	12/202	20		Dai	le Com	pleted: 3/12/2020 Logged by: S. Macke	IZIE		Date: 18/12/2020 Note: * indicates signatures on ori issue of log or last revision of log
		DRILLI	NG					MATERIAL			issue of log or last revision of lo
SCALE (m)	Drilling Method	Hole Support \ Casing	Water	Samples & Tests	Depth metres	Graphic Log	USC Symbol	Description [COBBLES/BOULDERS/FILL/TOPSOIL] then SOIL NAME: plasticity / primary particle characteristics, colour, seconda and minor components, zoning (origin) and ROCK NAME: grain size, colour, fabric / texture, inclusions or minor components, durability, strength, weathering / alteration, defects	Moisture Condition	Consistency / Density Index	Comments/ Observations
					0.50		-	[FILL]: Gravelly SAND: brown and dark brown mottled, with fines, with roots and minor organics.	M	-	Appears well compacted.
			Nil	D	0.50		-	CONGLOMERATE/PEBBLY SANDSTONE: fine to medium, pale grey with red brown iron staining, very low strength, extremely weathered (excavates as Clayey Sandy GRAVEL).	-	-	
1					1 20			1.1m, becomes low to medium strength.			Becoming harder drilling at 1.1m.
2											
3											
L											
See	e stan	dard s	heets		\sim	GHI				lob l	No.
			eviatio		HD	Level	3, GHD	Tower, 24 Honeysuckle Drive, Newcastle 2300 Australia			

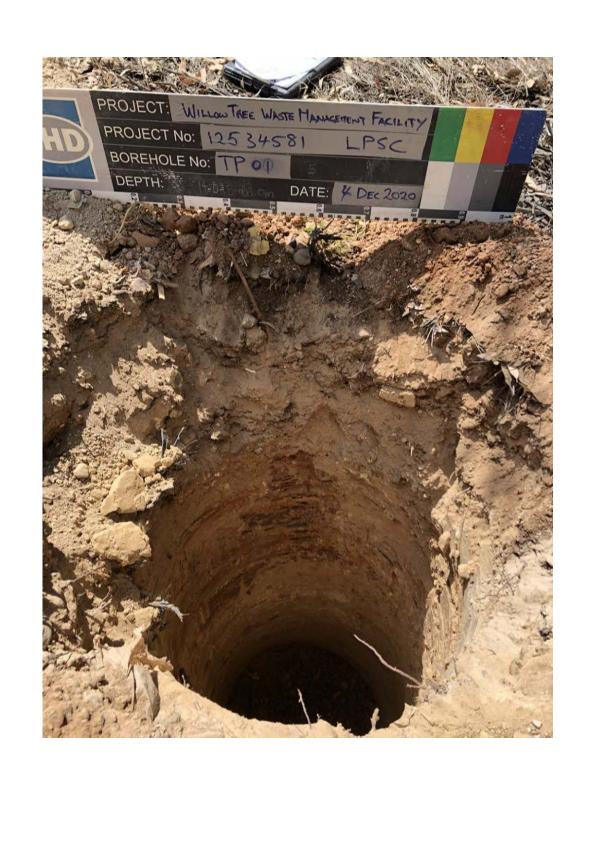
В	OREHO	LE LOO	G SHE	ET							
2/20	lient :		•	Plains Shi				HOLE N	^	ТР	15
P	roject :			e Waste	-		acility				
	ocation			load, Willo		NSW		Surface RL: 506.2m AHD Angle from Horiz.: 90		SHEE	
P	osition : tig Type			st location avator SKWG		r		Surface RL: 506.2m AHD Angle from Horiz.: 90° Contractor: Driller:			Processed : AJET Checked : SJM
	ate Star				burninge		e Com	pleted : 3/12/2020 Logged by : S. Mackenz	ie		Date: 18/12/2020
				,20		Dut					Note: * indicates signatures on original issue of log or last revision of log
		DRILL	ING	1				MATERIAL		-	issue of log of last revision of log
581 WILLOW TREE.GPJ GHD_G SCALE (m)	Drilling Method	Hole Support \ Casing	Water	Samples & Tests	Depth metres	Graphic Log	USC Symbol	Description [COBBLES/BOULDERS/FILL/TOPSOIL] then SOIL NAME: plasticity / primary particle characteristics, colour, secondary and minor components, zoning (origin) and ROCK NAME: grain size, colour, fabric / texture, inclusions or minor components, durability, strength, weathering / alteration, defects	Moisture Condition	Consistency / Density Index	Comments/ Observations
			Nil	В	0.05			[TOPSOIL]: Leaf litter. CONGLOMERATE/PEBBLY SANDSTONE: fine to medium, pale grey with red brown iron staining, very low strength, extremely weathered (excavates as Silty Sandy GRAVEL, fine to medium (GM/SM).		-	
- - 1					0.90		-	CONGLOMERATE: fine to medium, pale grey, medium strength, slightly weathered.	-	-	Harder drilling from 0.9m.
- 2 2 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 2 3 2 3 2 3 2 3 								End of borehole at 1.10 metres. Practical Refusal			
d	ee stan etails o basis o	f abbr	eviatio	ons 🤇	HD	T: +6	3, GHD 1 2 497) Tower, 24 Honeysuckle Drive, Newcastle 2300 Australia 9 9999 F: +61 2 4979 9988 E: ntlmail@ghd.com NG GEOTECHNICAL ENGINEERS AND GEOLOGISTS	J	ob N	^{io.} 12534581

BC	DREHO	E LO	g she	ET							
	ient :	Live	rpool l	Plains Shi	re Coun	cil		HOLE N	~	тр	16
Pro	oject :			ee Waste	-		acility				
Lo Lo	cation			load, Willo		NSW				SHEE	T 1 OF 1
9 Po	sition :			st location				Surface RL: 504.3m AHD Angle from Horiz. : 90	0		Processed : AJET
≝ <mark>Ri</mark> ę	g Type :			avator SKWB	buntange		ha 0	Contractor : Driller :	ie		Checked : SJM
	te Start)20		Dat	te Com	Impleted : 3/12/2020 Logged by : S. Mackenz	le		Date: 18/12/2020 Note: * indicates signatures on origina
		DRILL	ING					MATERIAL			Note: * indicates signatures on origina issue of log or last revision of log
	Drilling Method	Hole Support \ Casing	Water	Samples & Tests	Depth metres	Graphic Log	USC Symbol	Description [COBBLES/BOULDERS/FILL/TOPSOIL] then SOIL NAME: plasticity / primary particle characteristics, colour, secondary and minor components, zoning (origin) and ROCK NAME: grain size, colour, fabric / texture, inclusions or minor components, durability, strength, weathering / alteration, defects	Moisture Condition	Consistency / Density Index	Comments/ Observations
JREHOLE AS1726 2017 125:			Nil		0.20		-	CONGLOMERATE: fine to medium, pale grey, medium strength, slightly weathered (excavates as GRAVEL with sand and fines). End of borehole at 0.20 metres. Practical Refusal	-	-	
-											
-											
- - -2											
-											
-											
- - -3 -											
-											
de	e stan tails of basis o	f abbr	eviatio	ons 🧿	HD	T: +6	3, GHE 31 2 497) 7 ower, 24 Honeysuckle Drive, Newcastle 2300 Australia 9 9999 F: +61 2 4979 9988 E: ntImail@ghd.com NG GEOTECHNICAL ENGINEERS AND GEOLOGISTS	J	ob N	lo. 12534581

E	BOREH	OLE LO	G SHE	ET							
12/20	Client :		•	Plains Sh				HOLE N	о.	ΤР	17
1 22/	Project .ocatio			ee Waste load, Will	-		-acility				T 1 OF 1
	osition			st location		NOW		Surface RL: 503.1m AHD Angle from Horiz.: 90°		0	Processed : AJET
Е 2:0	Rig Typ			avator SKW	-	r		Contractor : Driller :			Checked : SJM
		arted : 4					e Com	pleted : 4/12/2020 Logged by : S. Mackenz	ie		Date: 18/12/2020
ME TEM		DRILL						MATERIAL			Note: * indicates signatures on original issue of log or last revision of log
D GEO			ING					Description	Ę		Comments/
581 WILLOW TREE.GPJ GF SCALF (m)	Drilling Method	Hole Support \ Casing	Water	Samples & Tests	Depth metres	Graphic Log	USC Symbol	[COBBLES/BOULDERS/FILL/TOPSOIL] then SOIL NAME: plasticity / primary particle characteristics, colour, secondary and minor components, zoning (origin) and ROCK NAME: grain size, colour, fabric / texture, inclusions or minor components, durability, strength, weathering / alteration, defects	Moisture Condition	Consistency / Density Index	Observations
GE0_BOREHOLE_AS1726 2017 12534581 WILLOW TREE.GPJ GHD_GE0_TEMPLATE 2.00.GDT 22/12/20			Zi		1 20		-	[FILL]: WASTE: metal bike frame, bed frame, glass bottles (dated 1962), insulated wire, bricks, plastic, with topsoil spread throughout.	D	-	Appears loose
Ì					1.20 1.30	(XXX 	-	SANDSTONE: fine grained, pale grey, very low strength, extremely weathered.	-	-	
- - - - - - - - - - - - - - - - - - -								End of borehole at 1.30 metres. Waste collapsing & binding up auger			
5	See sta	ndard	sheets			GH			J	ob N	lo.
		of abbr of des		ons ons	GHD	T: +6	1 2 497) Tower, 24 Honeysuckle Drive, Newcastle 2300 Australia '9 9999 F: +61 2 4979 9988 E: ntlmail@ghd.com NG GEOTECHNICAL ENGINEERS AND GEOLOGISTS			12534581

-	ject :	Will	ow Tre	Plains Shii ee Waste I	Manage	ment F	acility			HOLE N	0.		18 ET 1 OF 1
	ation : ition :			oad, Willo		NSW		Surface RL: 500.0m	AHD	Angle from Llovin . 00	0	SHEE	Processed : AJE
				st location	-				AHD	Angle from Horiz. : 90			
-				avator SKWC	burthige			Contractor :		Driller :			Checked : SJM
Date	e Starte	ed: 4	/12/20	20		Dat	e Com	pleted: 4/12/2020		Logged by : S. Mackenz	le		Date: 18/12/2020
	I	DRILL	ING					MATE	RIAL				Note: * indicates signatures on o issue of log or last revision of
(C)	ethod	oort		& Tests		bo	bol	[COBBLES/BOL		L/TOPSOIL] then	Moisture Condition	icy / idex	Comments/ Observations
SCALE (m)	Drilling Method	Hole Support \ Casing	Water	Samples & Tests	Depth metres	Graphic Log	USC Symbol	and minor com ROCK NAME: grain size, c	ponents, zo plour, fabric	aracteristics, colour, secondary ning (origin) and / texture, inclusions or minor thering / alteration, defects	Moisture (Consistency / Density Index	
1			Nij	В	0.05			[TOPSOIL]: leaf litter. CONGLOMERATE/PEB medium, some coarse c brown, very low to low s (excavates as Clayey Sa (GC).	asts, pale rength, ex	grey ironstained red tremely weathered	- <u>M</u>	-	Consistent drilling.
2								End of borehole at 1.80 Near max reach	ineues.				
det	e stanc	abbr		ons [HD	T: +6	3, GHD	Tower, 24 Honeysuckle Drive 9 9999 F: +61 2 4979 9988	, Newcastle E: ntlmail	⇒ 2300 Australia @ghd.com		lob N	lo. 12534581

_	во	REHO	E LOO	G SHE	ET							
2/20		ent :		•	Plains Shi				HOLE N	0	ΤР	19
22/1		oject :			ee Waste	-		acility				
CGD1		cation : sition :			load, Willo		NSW		Surface RL: 495.5m AHD Angle from Horiz.: 90		SHEE	T 1 OF 1 Processed : AJET
E 2.00		Type :			st location avator SK W	-	r		Contractor : Driller :			Checked : SJM
LATI		te Start				sour unige		te Com	pleted : 3/12/2020 Logged by : S. Mackenz	rie		Date: 18/12/2020
TEMF	Da				,20		Du					Note: * indicates signatures on original issue of log or last revision of log
<u>е</u>			DRILL	ING	1				MATERIAL			issue of log of last revision of log
	SUALE (M)	Drilling Method	Hole Support \ Casing	Water	Samples & Tests	Depth metres	Graphic Log	USC Symbol	Description [COBBLES/BOULDERS/FILL/TOPSOIL] then SOIL NAME: plasticity / primary particle characteristics, colour, secondary and minor components, zoning (origin) and ROCK NAME: grain size, colour, fabric / texture, inclusions or minor components, durability, strength, weathering / alteration, defects	Moisture Condition	Consistency / Density Index	Comments/ Observations
GE0_BOREHOLE_AS1726 2017 12534581 WILLOW TREE.GPJ GHD_GE0_TEMPLATE 2.00.GDT 22/12/20				Nil		0.40		GC -	Sandy Clayey GRAVEL: fine to medium, red brown (residual). CONGLOMERATE: fine to medium, pale grey with iron staining, very low strength, extremely weathered, with roots and fines (excavates as Sandy GRAVEL, fine to medium, with fines). 0.7m, becoming stronger.	-	VD -	-
						0.80	R		End of borehole at 0.80 metres.			
	2								Practical Refusal			
-		e stan					GHI			J	ob N	- - - - - - - - - - - - - - - - - - -
		tails of basis o			ons 0	HD	T: +6	1 2 497) Tower, 24 Honeysuckle Drive, Newcastle 2300 Australia '9 9999 F: +61 2 4979 9988 E: ntImail@ghd.com NG GEOTECHNICAL ENGINEERS AND GEOLOGISTS			12534581


BURER	OLE LOO	g she	ET							
Client :	Live	rpool l	Plains Shir	re Coun	cil		HOLE N	^	тр	20
Project			ee Waste N	-		acility				
Location			oad, Willo		NSW				SHEE	ET 1 OF 1
Position			st location				Surface RL: 490.1m AHD Angle from Horiz. : 90	`		Processed : AJET
Rig Type			avator SKWR	SSRtAnge			Contractor : Driller :			Checked : SJM
Date Sta	arted: 3	/12/20	20		Dat	te Com	pleted : 3/12/2020 Logged by : S. Mackenz	ie		Date: 18/12/2020 Note: * indicates signatures on original
	DRILL	ING					MATERIAL			issue of log or last revision of log
SCALE (m) Drilling Method	Hole Support \ Casing	Water	Samples & Tests	Depth metres	Graphic Log	USC Symbol	Description [COBBLES/BOULDERS/FILL/TOPSOIL] then SOIL NAME: plasticity / primary particle characteristics, colour, secondary and minor components, zoning (origin) and ROCK NAME: grain size, colour, fabric / texture, inclusions or minor	Moisture Condition	Consistency / Density Index	Comments/ Observations
	- Ho	Wa	Sai	De	Grad	SN GC	components, durability, strength, weathering / alteration, defects Sandy Clayey GRAVEL: fine to medium, red brown (residual).	D	ÖÖ VD	
-		Ni		0.20		-	CONGLOMERATE: fine to medium, pale grey with iron staining, very low strength, extremely weathered (excavates as Sandy GRAVEL, with fines).	-	-	
-							0.6m, becoming low to medium strength and pale grey.			
-				0.70	1993		End of borehole at 0.70 metres.			
-1										
- 3 - 3 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4	of abbr	eviatio	ons 🤆	Ĥ	T: +6	3, GHD 1 2 497) Tower, 24 Honeysuckle Drive, Newcastle 2300 Australia 9 9999 F: +61 2 4979 9988 E: ntlmail@ghd.com NG GEOTECHNICAL ENGINEERS AND GEOLOGISTS	J	ob N	lo. 12534581

Clie Proi	nt: ect:		•	Plains Shir e Waste N			acilitv			HOLE N	0.	TP	21
-	ation :			oad, Willo	-		aomy					SHE	ET 1 OF 1
	ition :			st location				Surface RL: 493.2m	AHD	Angle from Horiz. : 90	0	_	Processed : HAL
						-			AIID	-			
-				avator SKWB	BARCHUGE			Contractor :		Driller :			Checked : SJM
Date	Starte	ed: 4/	12/20	20		Dat	te Com	pleted: 4/12/2020		Logged by : S. Mackenz	zie		Date: 18/12/2020 Note: * indicates signatures on o
	[DRILLI	NG					MATI	ERIAL				issue of log or last revision of
				s					Descriptio	n	ion		Comments/
SCALE (M)	Drilling Method	Hole Support \ Casing	Water	Samples & Tests	Depth metres	Graphic Log	USC Symbol	SOIL NAME: plasticity / prima and minor com ROCK NAME: grain size, c	y particle ch ponents, zo olour, fabric	L/TOPSOIL] then haracteristics, colour, secondary ning (origin) and / texture, inclusions or minor thering / alteration, defects	Moisture Condition	Consistency / Density Index	Observations
							-	CONGLOMERATE: fine brown, very low strength at Sandy GRAVEL, fine	, extremel	ly weathered (excavates	-	-	
				D (rock)	0.45		-	SANDSTONE: fine grain 5-10mm thick, medium s (excavates as Sandy CL	strength, n	noderately weathered	-	-	
1			Ni	В				1 9m booming the					
					1.80	· · · · ·		1.8m, becoming stronge End of borehole at 1.80					
2								Slow progress near max		ch			
3													
See	stand	lard s	heets	s for	\sim	GHI					J	ob N	lo.
							3, GHD	Tower, 24 Honeysuckle Drive	. Newcastle	e 2300 Australia	1		

BOREHOLE LOG SHEET												
02/2 CI	ient :		•	Plains Shi				HOLE N	0	ΤР	22	
Pr	oject :				le management l'achty					SHEET 1 OF 1		
Location : Merriwa Road, Position : Refer to test loca						NSW		Surface RL: 497.6m AHD Angle from Horiz. : 90	0	SHEE	Processed : HAL	
	g Type			avator SKMR		r		Contractor : Driller :			Checked : SJM	
					Juninige		te Com		zie		Date: 18/12/2020	
	Date Started : 4/12/2020 DRILLING			20							Note: * indicates signatures on original issue of log or last revision of log	
								MATERIAL			issue of log of last revision of log	
31 WILLOW TREE.GPJ GHD_0 SCALE (m)	Drilling Method	Hole Support \ Casing	Water	Samples & Tests	Depth metres	Graphic Log	USC Symbol	Description [COBBLES/BOULDERS/FILL/TOPSOIL] then SOIL NAME: plasticity / primary particle characteristics, colour, secondary and minor components, zoning (origin) and ROCK NAME: grain size, colour, fabric / texture, inclusions or minor components, durability, strength, weathering / alteration, defects	Moisture Condition	Consistency / Density Index	Comments/ Observations	
125345					0.10		-	[TOPSOIL]: leaf litter, 100mm.	-	-		
			Ni	В	1.20		-	SANDSTONE: fine grained, red brown, thinly bedded, with roots, very low strength, extremely weathered (excavates as Sandy CLAY, low plasticity with gravel (CL). 0.5m, pale grey with red brown iron stained. 0.5m, pale grey with red brown iron stained. CONGLOMERATE: fine to coarse, up to 100mm clasts of quartz, pale grey and red brown, low to medium strength, highly to moderately weathered. End of borehole at 1.30 metres. Practical Refusal	-	-		
-2												
- 3 - 3 - 1 - 1			host	for		GHI						
_	e stan					Level	3, GHD	Tower, 24 Honeysuckle Drive, Newcastle 2300 Australia	J	N UU	N U.	
T: +612 4979 9999 F: +612 4979 9988 E: ntlmail@ghd.com									•	12534581		
& basis of descriptions CONSULTING GEOTECHNICAL ENGINEERS AND GEOLOGISTS										-		

_	во	REHOL	E LOC	S SHE	ET							
2/12/20		ent : oject :		•	Plains Shir ee Waste N			acility	HOLE N	о.	TP	23
DT 22		cation :			oad, Willo	-					SHE	ET 1 OF 1
00.GI		sition :			st location p				Surface RL: 500.5m AHD Angle from Horiz.: 90°			Processed : HAL
TE 2.	Rig	Type :	Kobe	lco Exc	avator SKWBS	GREANGE	r		Contractor : Driller :			Checked : SJM
APLA	Da	te Start	ed : 3	/12/20	20		Dat	e Com	pleted : 3/12/2020 Logged by : S. Mackenz	ie		Date: 18/12/2020
Ē			DRILL	ING					MATERIAL			Note: * indicates signatures on original issue of log or last revision of log
GHD_GEO					sts				Description	ition		Comments/ Observations
1581 WILLOW TREE.GPJ	SCALE (m)	Drilling Method	Hole Support \ Casing	Water	Samples & Tests	Depth metres	Graphic Log	USC Symbol	[COBBLES/BOULDERS/FILL/TOPSOIL] then SOIL NAME: plasticity / primary particle characteristics, colour, secondary and minor components, zoning (origin) and ROCK NAME: grain size, colour, fabric / texture, inclusions or minor components, durability, strength, weathering / alteration, defects	Moisture Condition	Consistency / Density Index	
GEO_BOREHOLE_AS1768 2017_12634581 WILLOW TREE.GPJ GHD_GEO_TEMPLATE 2.00.GDT_2271220	.1			Ĩ	В	1.30		-	CONGLOMERATE/PEBBLY SANDSTONE: fine to medium, pale grey with red brown iron staining, very low strength, extremely weathered (excavates as Clayey Gravelly SAND (SC).	-	-	Consistently slow progress.
- - - - -	2											
		e stan					GHE) Tower, 24 Honeysuckle Drive, Newcastle 2300 Australia	J	ob N	- - - - - - - - - - - - - - - - - - -
		tails of basis o			ons ons	HD	T: +6	1 2 497	9 9999 F: +61 2 4979 9988 E: ntlmail@ghd.com NG GEOTECHNICAL ENGINEERS AND GEOLOGISTS		•	12534581

Pro	ent : ject :	Willo	ow Tre	Plains Shi e Waste I	Manage	ment F	acility			HOLE	No.		
Loc	ation :	Merr	riwa R	oad, Willo	w Tree,	NSW						SHE	ET 1 OF 1
	sition :			st location				Surface RL: 495.3m	AHD	Angle from Horiz. :	90°		Processed : HAL
-				avator SKWR	56RtAnge	r		Contractor :		Driller :			Checked : SJM
Dat	e Starte	e d : 4/	/12/20	20		Dat	te Com	pleted: 4/12/2020		Logged by : S. Macke	nzie		Date: 18/12/2020
	[DRILLI	NG					МАТ	ERIAL				Note: * indicates signatures on or issue of log or last revision of log
									Descripti	on	۲		Comments/
SCALE (m)	Drilling Method	Hole Support \ Casing	Water	Samples & Tests	Depth metres	Graphic Log	USC Symbol	[COBBLES/BO SOIL NAME: plasticity / prima and minor con ROCK NAME: grain size, c	JLDERS/FI ry particle c ponents, z	LL/TOPSOIL] then tharacteristics, colour, seconda oning (origin) and c / texture, inclusions or minor athering / alteration, defects	ন্ত্র Moisture Condition	Consistency / Densitv Index	Observations
1			Nij	В	1.60		-	CONGLOMERATE/PEE medium, pale grey, with strength, extremely wea SAND with gravel (SC).	red brow thered (ex	n iron staining, very low	-	-	20mm leaf litter.
					1.60		-	SANDSTONE: fine to m strength, moderately to	highly we	ained, grey brown, low athered.	-	-	
2								End of borehole at 1.80 Practical Refusal	metres.				
3													
	e stanc	abbre	eviatio		iHD,	GHI Level T: +6	3, GHE) 7 Tower, 24 Honeysuckle Driv 99999 F: +61 2 4979 9988	e, Newcast	le 2300 Australia il@ghd.com			No. 12534581

Liverpool Plains Shire Council Willow Tree Waste Management Facility Merriwa Road, Willow Tree NSW TP Photographs

DRAWN H Warr	DATE 18/12/2020	
CHECKED S Mackenzie	DATE 18/12/2020	
SCALE Not To Se	cale	A4
PROJECT № 12534581	FIGURE № TP01 1/1	

GHD

Liverpool Plains Shire Council Willow Tree Waste Management Facility Merriwa Road, Willow Tree NSW TP Photographs

DRAWN H Warr	DATE 18/12/2020	
CHECKED S Mackenzie	DATE 18/12/2020	
SCALE Not To S	cale	A4
PROJECT No 12534581	FIGURE № TP02 1/1	

GHD_GEO_LIBRARY 2.00.GLB GrfcTbi DG PHOTO TEST PIT PHOTO 1 PER PAGE

12534581 WILLOW

		DRAWN H Warr	DATE 18/12/2020	
GHD	Liverpool Plains Shire Council Willow Tree Waste Management Facility	CHECKED S Mackenzie	DATE 18/12/2020	
GIND	Merriwa Road, Willow Tree NSW	SCALE Not To S	cale	A4
	TP Photographs	PROJECT No 12534581	FIGURE № TP03 1/1	

1		~	
(((

HD

Liverpool Plains Shire Council					
Willow Tree Waste Management Facility					
Merriwa Road, Willow Tree NSW					
TP Photographs					

DRAWN H Warr	DATE 18/12/2020	
CHECKED S Mackenzie	DATE 18/12/2020	
SCALE Not To S	cale	A4
PROJECT № 12534581	FIGURE № TP04 1/1	

EHD EHD

		DRAWN H Warr	DATE 18/12/2020					
	Liverpool Plains Shire Council Willow Tree Waste Management Facility	CHECKED S Mackenzie	DATE 18/12/2020					
	Merriwa Road, Willow Tree NSW	SCALE Not To Scale						
	TP Photographs	PROJECT № FIGURE № 12534581 TP05 1/1						

GHD

		DRAWN H Warr	DATE 18/12/2020	
GHD	Liverpool Plains Shire Council Willow Tree Waste Management Facility Merriwa Road, Willow Tree NSW TP Photographs	CHECKED S Mackenzie	DATE 18/12/2020	
		Not To Scale		
		PROJECT № 12534581	FIGURE № TP08 1/1	

	П	
 51		
-		 1

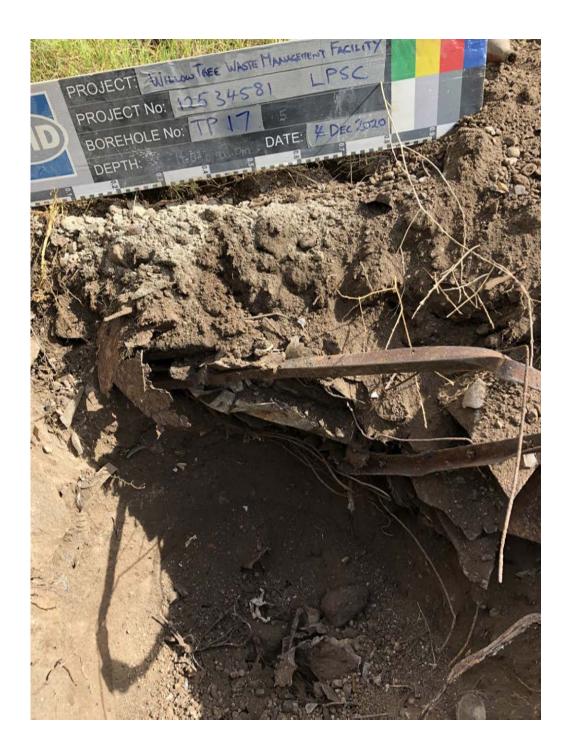
Liverpool Plains Shire Council Willow Tree Waste Management Facility Merriwa Road, Willow Tree NSW TP Photographs

DRAWN H Warr	DATE 18/12/2020	
CHECKED S Mackenzie	DATE 18/12/2020	
SCALE Not To Se	cale	A4
PROJECT № 12534581	FIGURE No TP10 1/1	

	Liverpool Plains Shire Council	DRAWN H Warr	DATE 18/12/2020	
GHD	Willow Tree Waste Management Facility	CHECKED S Mackenzie	DATE 18/12/2020	
GILD	Merriwa Road, Willow Tree NSW	SCALE Not To S	cale	A4
	TP Photographs	PROJECT № 12534581	FIGURE № TP12 1/1	

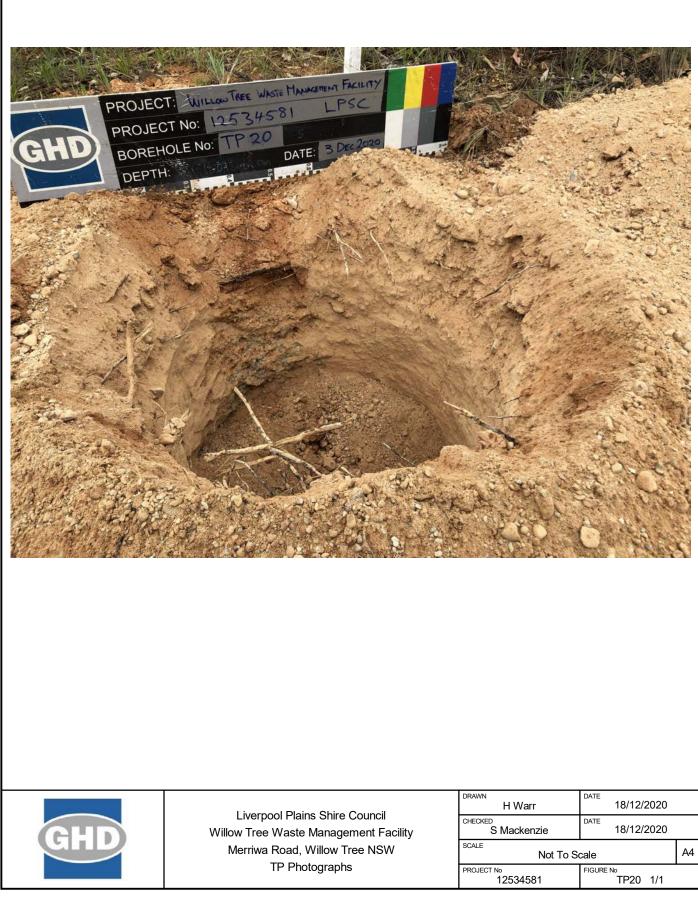
	DRAWN H Warr	DATE 18/12/2020	
Liverpool Plains Shire Council Willow Tree Waste Management Facility	CHECKED S Mackenzie	DATE 18/12/2020	
Merriwa Road, Willow Tree NSW	SCALE Not To S	cale	A4
TP Photographs	PROJECT № 12534581	FIGURE № TP14 1/1	

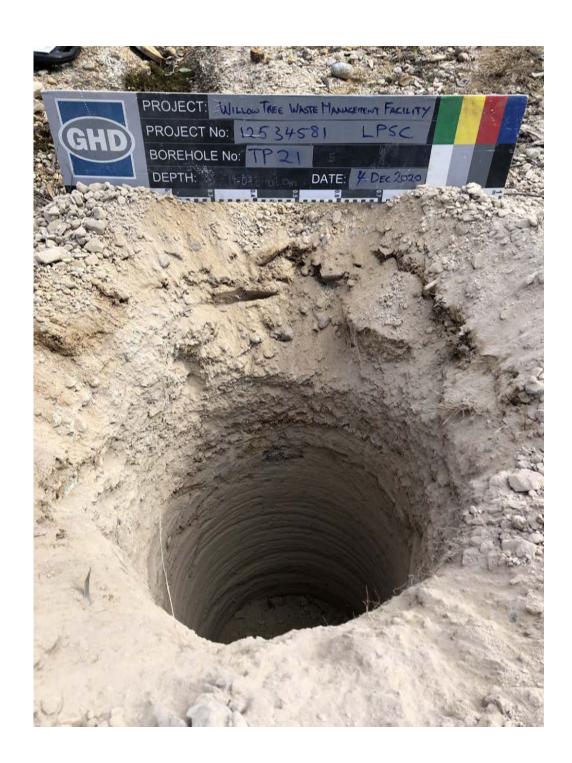
GHD



Liverpool Plains Shire Council Willow Tree Waste Management Facility Merriwa Road, Willow Tree NSW TP Photographs

DRAWN H Warr	DATE 18/12/2020	
CHECKED S Mackenzie	DATE 18/12/2020	
SCALE Not To S	cale	A4
PROJECT № 12534581	FIGURE № TP16 1/1	


Liverneel Dieine Shire Council	DRAWN H Warr	DATE 18/12/2020	
Liverpool Plains Shire Council Willow Tree Waste Management Facility	CHECKED S Mackenzie	DATE 18/12/2020	
Merriwa Road, Willow Tree NSW	SCALE Not To S	cale	A4
TP Photographs	PROJECT № 12534581	FIGURE № TP17 1/1	


GHD

		DRAWN H Warr	DATE 18/12/2020	
GHD	Liverpool Plains Shire Council Willow Tree Waste Management Facility	CHECKED S Mackenzie	DATE 18/12/2020	
GITL	Merriwa Road, Willow Tree NSW	SCALE Not To S	cale	A4
	TP Photographs	PROJECT No 12534581	FIGURE № TP18 1/1	

	DRAWN H Warr	DATE 18/12/2020	
Liverpool Plains Shire Council Willow Tree Waste Management Facility	CHECKED S Mackenzie	DATE 18/12/2020	
Merriwa Road, Willow Tree NSW	SCALE Not To S	cale	A4
TP Photographs	PROJECT № 12534581	FIGURE № TP21 1/1	-

	Liverneel Dieine Chire Council	DRAWN H Warr	DATE 18/12/2020	
GHD	Liverpool Plains Shire Council Willow Tree Waste Management Facility	CHECKED S Mackenzie	DATE 18/12/2020	
GIND	Merriwa Road, Willow Tree NSW	SCALE Not To S	cale	A4
	TP Photographs	PROJECT № 12534581	FIGURE № TP23 1/1	-

10.02 00 02

00.00

GPJ

12534581 WILLOW TREE.

GHD_GEO_LIBRARY 2.00.GLB GrfcTbi DG PHOTO TEST PIT PHOTO 1 PER PAGE

	Liverneel Dieine Shire Council	DRAWN H Warr	DATE 18/12/2020	
GHD	Liverpool Plains Shire Council Willow Tree Waste Management Facility	CHECKED S Mackenzie	DATE 18/12/2020	
GITL	Merriwa Road, Willow Tree NSW	SCALE Not To S	cale	A4
	TP Photographs	PROJECT № 12534581	FIGURE № TP24 1/1	

Appendix D – Laboratory Test Reports

Issue No: 1

NAT

Authorised Signatory:

THIS DOCUMENT SHALL NOT BE REPRODUCED EXCEPT IN FUL

Date of issue :

Report No: SYD2002784

Accredited for compliance with ISO / IEC 17025 - Testing

D.Brooke

16/12/20

Laboratory Accreditation No. 679

Point Load Strength Index - Report

Client:	Liverneel Dieine Shire Council	í٢
Client.	Liverpool Plains Shire Council	
Project:	Willow Tree Waste Management Facility	
Location:	Merriwa Road, Willow Tree	
Job No.:	12534581	l
Borehole / Sample No.:	See below	l
Test Method:	AS4133.4.1	

Test Results Dimensions Results **Sample Description** Test Depth Failure Load, P Type D L W De IS50 Rock (m) Is (MPa) Structure Moisture Mode (D,A,I) (mm) (mm) (mm) (mm) (kN) (MPa) Туре (1,2,3..) TP5 0.0 - 0.3 Т 82.1 56.2 92.3 98.2 2.35 3 0.24 0.33 SS MA Moist I 60.1 54.2 83.0 79.7 1.66 3 0.26 0.32 SS MA Moist TP8 0.0 - 0.6 L 74.1 36.3 75.5 84.4 2.87 3 0.40 0.51 SS MA Moist TP21 0.5 - 1.8 I 36.5 56.4 95.4 66.6 2.4 3 0.54 0.62 SS MA Moist I 50.5 34.8 90.5 76.3 2.94 3 0.51 0.61 SS MA Moist Comments (if applicable): MOISTURE ROCK TYPE STRUCTRUE FAILURE MODE (W) Wet (SS) Sandstone (MA) Massive 1 = Fracture through fabric oblique to bedding (M) Moist (ST) (BE) Bedded 2 = Fracture along bedding Siltstone (D) Dry (SH) (IB) Interbedded 3 = Fracture through rock mass Shale (AD) As Drilled 4 = Fracture influenced by pre-existing: (LA) Laminated (G) Granitic (J) Joint plane, (M) Microfracture, (F) Foliation, (V) Vein (MSS) Meta Sandtone (AR) As Received (CR) Crystalline 5 = Partial fracture or chip (Invalid result) (MST) Meta Siltstone TEST TYPES Time Since Sampling = Days -Sampled By: GHD L > 0.5 D ОId ()D = Diametral Storage: W Date Sampled: not known 0.6W < D < WX UNDER COVER A = Axial CORE BOX D Tested By: GC Х WRAPPED OPEN AIR D 0.6W < D < W I = Irregular Lump UNWRAPPED UNKNOWN

14/12/20

Date Tested:

tilent: Liverpool Plains Shire Council rroject: 12534581 Troject: 15122020 Tris DocUMENT SHALL NOT BE REPRODUCED EXCEPT IN The Sample Dy GHD Cation Willow Tree Waste Management Facility Int Location Merriva Road, Willow Tree Troject: 12534581 Troject:	itent: Liverpool Plains Shire Council iroject: 12534581 iroject: 125380 iroject: 125380 iroject: 125380 iroject: 125383 iroject: 1253833.1 iroj	aterial Test	Report	Report No: SYD20027 Issue No Accredited for compliance with ISO / IEC 17025
No: 679 Date of leave: 15/12/2020 THIS DOCUMENT SHALL NOT BE REPRODUCED EXCEPT INI Date of leave: 15/12/2020 THIS DOCUMENT SHALL NOT BE REPRODUCED EXCEPT INI Date of leave: 15/12/2020 THIS DOCUMENT SHALL NOT BE REPRODUCED EXCEPT INI Date of leave: 15/12/2020 THIS DOCUMENT SHALL NOT BE REPRODUCED EXCEPT INI Date of leave: 15/12/2020 THIS DOCUMENT SHALL NOT BE REPRODUCED EXCEPT INI Date of leave: 15/12/2020 THIS DOCUMENT SHALL NOT BE REPRODUCED EXCEPT INI Date of leave: 15/12/2020 THIS DOCUMENT SHALL NOT BE REPRODUCED EXCEPT INI Date of leave: 15/12/2020 THIS DOCUMENT SHALL NOT BE REPRODUCED EXCEPT INI Date of leave: 15/12/2020 THIS DOCUMENT SHALL NOT BE REPRODUCED EXCEPT INI Date of leave: 15/12/2020 THIS DOCUMENT SHALL NOT BE REPRODUCED EXCEPT INI Date of leave: 15/12/2020 THIS DOCUMENT SHALL NOT BE REPRODUCED EXCEPT INI Date of leave: 15/12/2020 THIS DOCUMENT SHALL NOT BE REPRODUCED EXCEPT INI Date of leave: 15/12/2020 THIS DOCUMENT SHALL NOT BE REPRODUCED EXCEPT INI Date Tested: 5/12/2020 Note: Sample Veal Shall Document Shall	No: 679 Date of Issue: 15/12/2020 THS DOCUMENT SHALL NOT BE REPRODUCED EXCEPTINE This Document Shall. This During Shall.	lient: Liverpool Plai	ins Shire Council	
mpled By Sampled by GHD cation Willow Tree Waste Management Facility lint Location Merriva Road, Willow Tree 1/ TP No. TP1 pht (m) 1.5 - 1.8 sit Description CLAY with sand trace gravel light grey ther Test Results secription Method Result Limits article Size Distribution As 1289.3.6.1 Drying by: Oven Date Tested: 3/12/2020 Note: Sample Washed Sieve Size % Passing 10 26.5mm 100 26.5mm 100 26.5mm 99 19.0mm 97 13.2mm 96 9.5mm 94 4.75mm 91 4.75mm 91 4.75m	HD Sample No SYD20-0515-01 mpled By Sampled by GHD cation Willow Tree Waste Management Facility Introduction Merriva Road, Willow Tree if 7 PNo. TP1 spith (m) 1.5 - 1.8 iil Description CLAY with sand trace gravel light grey ther Test Results secription Method Print By: Oven Date Tested: 8/12/2020 Note: Sample Washed Sieve Size V/2/2020 Note: Sample Washed Sieve Size % Passing Limits add of the sample washed Sieve Size % Passing Limits 300µm 99 add of the sample washed Sieve Size % Passing Sieve Size % Passing Limits add of the sample washed Sieve Size % Passing Limits add of the sample washed Sieve Size % Passing Limits add of the sample washed Sieve Size % Passing Sieve Size % Passing Sieve Size % Passing add of the sample washed Sieve Size % Passing add of the sample washed Sieve Size % Passing Sieve Size % Passing Sieve	roject: 12534581		No [.] 679
Impled By Sampled by GHD breation Willow Tree Waste Management Facility Willow Tree Waste Management Facility Merrive Road, Willow Tree 1/ TP No. TP1 spth (m) 1.5 - 1.8 of CLAY with sand trace gravel light grey there Test Results secription CLAY with sand trace gravel light grey methods and trace gravel light grey there is a secription Method Result Limits secription Method Result Limits there is a secription Method Result Limits is a secription Result Secret State	Impled By Sampled by GHD vicition Willow Tree Waste Management Facility Merriva Road, Willow Tree 1/ TP No. TP1 pht (m) 1, 5, -1, 8 vil Description CLAY with sand trace gravel light grey ther Test Results secription Method Result Limits AS 1289.3.6.1 Drying by: Oven Date Testic: 8/12/2020 Note: Sample Washed Sieve Size % Passing 10 0 0 0 0 0 0 0 0 0 0 0 0 0			
AS 1289.3.6.1 Drying by: Oven Date Tested: 8/12/2020 Note: Sample Washed Sieve Size % Passing 100 26.5mm 99 19.0mm 97 13.2mm 96 9.5mm 94 6.7mm 91 4.75mm 90 2.36mm 87 1.18mm 84 600µm 80 425µm 79 300µm 77 150µm 69 75µm 59	AS 1289.3.6.1 Drying by: Oven Date Tested: 8/12/2020 Note: Sample Washed Sieve Size % Passing 100 100 100 100 100 100 100 10	mpled By cation ent Location I / TP No. pth (m)	Sampled by GHD Willow Tree Waste Management Facility Merriwa Road, Willow Tree TP1 1.5 - 1.8	
% Passing Drying by: Oven Date Tested: 8/12/2020 Note: Sample Washed Sieve Size % Passing Limit 37.5mm 100 20 0	[%] Passing ¹⁰⁰ ⁹¹ ⁹⁰ ⁹¹ ⁹² ⁹² ⁹³ ⁹³ ⁹³ ⁹³ ⁹³ ⁹³ ⁹³ ⁹³ ⁹³ ⁹⁵			
Note: Sample Washed Sieve Size % Passing Limit 37.5mm 100 60	$\begin{array}{c} 100 \\ 90 \\ 90 \\ 80 \\ 70 \\ 70 \\ 70 \\ 70 \\ 70 \\ 70 \\ 7$		Method	Result Limits
Sieve Size % Passing Limit 37.5mm 100 26.5mm 99 19.0mm 97 13.2mm 96 9.5mm 91 4.75mm 90 2.36mm 87 1.18mm 84 600µm 80 425µm 79 300µm 77 150µm 95 95 1.18mm 84 95 95 1.18mm 96 9.5mm 91 9.5mm 90 90 90 90 90 90 90 90 90 90	$\begin{array}{c} \text{Sieve Size} & \text{% Passing Limits} \\ 37.5\text{mm} & 100 \\ 26.5\text{mm} & 99 \\ 19.0\text{mm} & 97 \\ 13.2\text{mm} & 96 \\ 9.5\text{mm} & 94 \\ 6.7\text{mm} & 91 \\ 4.75\text{mm} & 90 \\ 2.36\text{mm} & 87 \\ 1.18\text{mm} & 84 \\ 600\mu\text{m} & 80 \\ 425\mu\text{m} & 79 \\ 300\mu\text{m} & 77 \\ 150\mu\text{m} & 69 \\ 75\mu\text{m} & 59 \end{array}$	article Size Distribu		AS 1289.3.6.1 Drying by: Oven
JEVE		escription Article Size Distribu % Passing		AS 1289.3.6.1 Drying by: Oven Date Tested: 8/12/2020

Comments N/A

aterial Test	t Report	Report No: SYD20027 Issue No
ent: Liverpool F	- Plains Shire Council	Accredited for compliance with ISO / IEC 17025 Testing
oject: 12534581	ľ	NATA Accreditation Approved Signatory: D.P Brooke No: 679 Date of Issue: 15/12/2020 THIS DOCUMENT SHALL NOT BE REPRODUCED EXCEPT IN FI
mple Details		
D Sample No hpled By ation nt Location / TP No. th (m) Description	SYD20-0515-04 Sampled by GHD Willow Tree Waste Management Facility Merriwa Road, Willow Tree TP9 0.2 - 0.5 GRAVEL with clay & sand light red brown	
ner Test Results	Method	Result Limits
	Method	Result Limits AS 1289.3.6.1
cription	Method	

Comments N/A

Material Tes	st Report		Report No: SYD2002753 Issue No: 1
	l Plains Shire Council	Accredit Testing	ed for compliance with ISO / IEC 17025 -
Project: 1253458	31		ed Signatory: D.P Brooke Issue: 15/12/2020 OT BE REPRODUCED EXCEPT IN FULL
Sample Details		Particle Size Di	stribution
GHD Sample No	SYD20-0515-05		89.3.6.1
Sampled By Location Client Location	Sampled by GHD Willow Tree Waste Management Facility Merriwa Road, Willow Tree	Date Tested:	
BH / TP No. Depth (m)	TP10 0.0 - 0.3	Note: Sample	Washed
Soil Description	Clayey gravelly SAND red brown	Sieve Size % 37.5mm 26.5mm 19.0mm 13.2mm 9.5mm 6.7mm	Passing Limits 100 100 98 96 91 83
Other Test Resul	ts	4.75mm	76
Description	Method Result Limi		66 57
Sample History Preparation Linear Shrinkage (%) Mould Length (mm) Crumbling Curling Cracking Liquid Limit (%) Method Plastic Limit (%) Plasticity Index (%)	AS 1289.1.1 Oven-dried AS 1289.1.1 Dry Sieved AS 1289.3.4.1 Not Tested No AS 1289.3.1.1 35 Four Point AS 1289.3.2.1 17 AS 1289.3.3.1 18	1.18mm 600µm 425µm 300µm 150µm 75µm	57 49 44 38 29 26
		Chart	
		⁵⁶ Parsing 100 00 00 00 00 00 00 00 00 00 00 00 00	Sieve 1 200 1

Comments

	t Report	Report No: SYD2002
ent: Liverpool I	Plains Shire Council	Accredited for compliance with ISO / IEC 1702 Testing
·		NATA
oject: 12534581		NATA Accreditation Approved Signatory: D.P Brooke No: 679
		Date of Issue: 15/12/2020 THIS DOCUMENT SHALL NOT BE REPRODUCED EXCEPT IN F
nple Details		
) Sample No Ipled By	SYD20-0515-06 Sampled by GHD	
ation	Willow Tree Waste Management Facility	
nt Location	Merriwa Road, Willow Tree	
TP No. th (m)	TP13 1.0 - 1.5	
Description	Sandy CLAY with gravel	
or Toot Dooult		
er Test Results		Decult Limite
cription	Method	Result Limits
ticle Size Distri	bution	AS 1289.3.6.1
ticle Size Distri % Passing	bution	Drying by: Oven
	bution	
% Passing	bution	Drying by: Oven Date Tested: 8/12/2020 Note: Sample Washed
% Passing	bution	Drying by: Oven Date Tested: 8/12/2020 Note: Sample Washed Sieve Size % Passing Limit
% Passing	bution	Drying by: Oven Date Tested: 8/12/2020 Note: Sample Washed Sieve Size % Passing Limit 37.5mm 100
% Passing	bution	Drying by: Oven Date Tested: 8/12/2020 Note: Sample Washed Sieve Size % Passing Limit 37.5mm 100 26.5mm 99 19.0mm 98
% Passing	bution	Drying by: Oven Date Tested: 8/12/2020Note:Sample WashedSieve Size% Passing 10037.5mm10026.5mm9919.0mm9813.2mm96
% Passing 100 90 	bution	Drying by: Oven Date Tested: 8/12/2020Note:Sample WashedSieve Size% Passing Passing37.5mm10026.5mm9919.0mm9813.2mm969.5mm93
% Passing 100 90 80 70 60 50	bution	Drying by: Oven Date Tested: 8/12/2020Note:Sample WashedSieve Size% Passing Passing37.5mm10026.5mm9919.0mm9813.2mm969.5mm936.7mm90
% Passing 100 90 	bution	Drying by: Oven Date Tested: 8/12/2020 Note: Sample Washed Sieve Size % Passing Limit 37.5mm 100 26.5mm 99 19.0mm 98 32.5mm 96 9.5mm 93 6.7mm 90 4.75mm 86
% Passing 100 90 80 70 60 50	bution	Drying by: Oven Date Tested: 8/12/2020 Note: Sample Washed Sieve Size % Passing Limit 37.5mm 100 26.5mm 99 19.0mm 98 32.5mm 93 6.7mm 90 4.75mm 86 2.36mm 78
% Passing 100 90 80 70 60 50 40 30	bution	Drying by: Oven Date Tested: 8/12/2020 Note: Sample Washed Sieve Size % Passing Limit 37.5mm 100 26.5mm 99 19.0mm 98 32.5mm 93 6.7mm 90 4.75mm 86 2.36mm 78 1.18mm 70 600µm 63
% Passing 100 90 80 70 60 50 40 20 20	bution	Drying by: Oven Date Tested: 8/12/2020 Note: Sample Washed Sieve Size % Passing Limit 37.5mm 100 26.5mm 99 19.0mm 98 32.5mm 91 9.5mm 93 6.7mm 90 4.75mm 86 2.36mm 78 1.18mm 70 600µm 63 425µm 58
% Passing 100 90 80 70 60 50 40 30	bution	Drying by: Oven Date Tested: 8/12/2020 Note: Sample Washed Sieve Size % Passing Limit 37.5mm 100 26.5mm 99 19.0mm 98 32.2mm 96 9.5mm 93 6.7mm 90 4.75mm 86 2.36mm 78 1.18mm 70 600μm 63 425μm 58 300μm 52
% Passing 100 90 80 70 60 50 40 30 20 10 0		Drying by: Oven Date Tested: 8/12/2020 Note: Sample Washed Sieve Size % Passing Limit 37.5mm 100 26.5mm 99 19.0mm 98 32.2mm 96 9.5mm 93 6.7mm 90 4.75mm 86 2.36mm 78 1.18mm 70 600µm 63 425µm 58 300µm 52 150µm 44
% Passing 100 90 80 70 60 50 40 30 20 10 0		Drying by: Oven Date Tested: 8/12/2020 Note: Sample Washed Sieve Size % Passing Limit 37.5mm 100 26.5mm 99 19.0mm 98 32.2mm 96 9.5mm 93 6.7mm 90 4.75mm 86 2.36mm 78 1.18mm 70 600µm 63 425µm 58 300µm 52 150µm 44
% Passing 100 90 80 70 60 50 40 40 40 50 10 10 10 10 10 10 10 10 10 1	30Jum 425Jum 600jum 1.18mm 4.75mm 6.7mm 9.5mm 13.2mm 13.2mm 26.5mm	Drying by: Oven Date Tested: 8/12/2020 Note: Sample Washed Sieve Size % Passing Limit 37.5mm 100 26.5mm 99 19.0mm 98 32.2mm 96 9.5mm 93 6.7mm 90 4.75mm 86 2.36mm 78 1.18mm 70 600µm 63 425µm 58 300µm 52 150µm 44
% Passing 100 90 80 70 60 50 40 30 20 10 0		Drying by: Oven Date Tested: 8/12/2020 Note: Sample Washed Sieve Size % Passing Limit 37.5mm 100 26.5mm 99 19.0mm 98 32.2mm 96 9.5mm 93 6.7mm 90 4.75mm 86 2.36mm 78 1.18mm 70 600µm 63 425µm 58 300µm 52 150µm 44
% Passing 100 90 80 70 60 50 40 30 20 10 0	30Jum 425Jum 600jum 1.18mm 4.75mm 6.7mm 9.5mm 13.2mm 13.2mm 26.5mm	Drying by: Oven Date Tested: 8/12/2020 Note: Sample Washed Sieve Size % Passing Limit 37.5mm 100 26.5mm 99 19.0mm 98 32.2mm 96 9.5mm 93 6.7mm 90 4.75mm 86 2.36mm 78 1.18mm 70 600µm 63 425µm 58 300µm 52 150µm 44
% Passing 100 90 80 70 60 50 40 30 20 10 0	30Jum 425Jum 600jum 1.18mm 4.75mm 6.7mm 9.5mm 13.2mm 13.2mm 26.5mm	Drying by: Oven Date Tested: 8/12/2020 Note: Sample Washed Sieve Size % Passing Limit 37.5mm 100 26.5mm 99 19.0mm 98 32.2mm 96 9.5mm 93 6.7mm 90 4.75mm 86 2.36mm 78 1.18mm 70 600µm 63 425µm 58 300µm 52 150µm 44

Comments N/A

Naterial Test	Report	Report No: SYD20027
Client: Liverpool Pla	ains Shire Council	Accredited for compliance with ISO / IEC 17025 Testing
Project: 12534581		NATA Accreditation Approved Signatory: D.P Brooke No: 679 Date of Issue: 15/12/2020 THIS DOCUMENT SHALL NOT BE REPRODUCED EXCEPT IN FU
ample Details		•
HD Sample No Impled By	SYD20-0515-07 Sampled by GHD	
ocation	Willow Tree Waste Management Facility	
ient Location I / TP No.	Merriwa Road, Willow Tree TP15	
epth (m) bil Description	0.5 - 1.1 Silty SANDY GRAVEL	
ther Test Results		
escription	Method	Result Limits
article Size Distrib	ution	AS 1289.3.6.1
% Passing	ution	AS 1289.3.6.1 Date Tested:
% Passing	ution	Date Tested:
% Passing 100 90	ution	Date Tested: Note: Sample Washed Sieve Size % Passing Limits
% Passing	ution	Date Tested: Note: Sample Washed Sieve Size % Passing Limits 37.5mm 100
% Passing	ution	Date Tested: Note: Sample Washed Sieve Size % Passing Limits 37.5mm 100 26.5mm 99 19.0mm 98
% Passing	ution	Date Tested: Note: Sample Washed Sieve Size % Passing Limits 37.5mm 100 26.5mm 99 19.0mm 98 13.2mm 96
% Passing 100 90 80 70	ution	Date Tested: Note: Sample Washed Sieve Size % Passing Limits 37.5mm 100 26.5mm 99 19.0mm 98 13.2mm 96 9.5mm 91 6.7mm 83
% Passing 100	ution	Date Tested: Note: Sample Washed Sieve Size % Passing Limits 37.5mm 100 26.5mm 99 19.0mm 98 13.2mm 96 9.5mm 91 6.7mm 83 4.75mm 72
% Passing 100	ution	Date Tested: Note: Sample Washed Sieve Size % Passing Limits 37.5mm 100 26.5mm 99 19.0mm 98 13.2mm 96 9.5mm 91 6.7mm 83 4.75mm 72 2.36mm 54 1.18mm 45
% Passing 100	ution	Date Tested: Note: Sample Washed Sieve Size % Passing Limits 37.5mm 100 26.5mm 99 19.0mm 98 13.2mm 96 9.5mm 91 6.7mm 83 4.75mm 72 2.36mm 54 1.18mm 45 600μm 38
% Passing 100	ution	Date Tested: Note: Sample Washed Sieve Size % Passing Limits 37.5mm 100 26.5mm 99 19.0mm 98 13.2mm 96 9.5mm 91 6.7mm 83 4.75mm 72 2.36mm 54 1.18mm 45 600µm 38 425µm 33 300µm 29
% Passing 100 90 80 70 60 50 40 30 20 10 0		Date Tested: Note: Sample Washed Sieve Size % Passing Limits 37.5mm 100 26.5mm 99 19.0mm 98 13.2mm 96 9.5mm 91 6.7mm 83 4.75mm 72 2.36mm 54 1.18mm 45 600µm 38 425µm 33 300µm 29 150µm 20
% Passing 100	425µm 600µm 4.75mm 6.7mm 9.5mm 13.2mm 23.35mm 37.5mm	Date Tested: Note: Sample Washed Sieve Size % Passing Limits 37.5mm 100 26.5mm 99 19.0mm 98 13.2mm 96 9.5mm 91 6.7mm 83 4.75mm 72 2.36mm 54 1.18mm 45 600µm 38 425µm 33 300µm 29
% Passing 100 90 80 70 60 50 40 20 10 0		Date Tested: Note: Sample Washed Sieve Size % Passing Limits 37.5mm 100 26.5mm 99 19.0mm 98 13.2mm 96 9.5mm 91 6.7mm 83 4.75mm 72 2.36mm 54 1.18mm 45 600µm 38 425µm 33 300µm 29 150µm 20
% Passing 100 90 80 70 60 50 40 30 20 10 0	425µm 600µm 4.75mm 6.7mm 9.5mm 13.2mm 23.35mm 37.5mm	Date Tested: Note: Sample Washed Sieve Size % Passing Limits 37.5mm 100 26.5mm 99 19.0mm 98 13.2mm 96 9.5mm 91 6.7mm 83 4.75mm 72 2.36mm 54 1.18mm 45 600µm 38 425µm 33 300µm 29 150µm 20
	425µm 600µm 4.75mm 6.7mm 9.5mm 13.2mm 23.35mm 37.5mm	Date Tested: Note: Sample Washed Sieve Size % Passing Limits 37.5mm 100 26.5mm 99 19.0mm 98 13.2mm 96 9.5mm 91 6.7mm 83 4.75mm 72 2.36mm 54 1.18mm 45 600µm 38 425µm 33 300µm 29 150µm 20

N/A

	-	ſ	Report No	: SYD20027
laterial Test	Report			Issue No
			Accredited for compliance Testing	with ISO / IEC 17025
Client: Liverpool Pla	ains Shire Council			
				/
			1	
10504504				D Brooks
Project: 12534581		Γ	IATA Accreditation Approved Signatory: D No: 679	
			Date of Issue: 15/12/2 THIS DOCUMENT SHALL NOT BE REPRODU	
ampla Dataila				
ample Details HD Sample No	SYD20-0515-08			
ampled By	Sampled by GHD			
ocation	Willow Tree Waste Ma			
ient Location I / TP No.	Merriwa Road, Willow TP18	Tree		
epth (m)	0.5 - 1.0			
bil Description	Clayey SANDY GRAV	EL		
-				
ther Test Results				
escription	Meth	od	Result	Limits
escription	Weti		Result	Linits
autiala Cina Diatuik			AS 1289.3.6.1	
article Size Distrib	ution		AS 1209.3.0.1	
% Passing		· · · · · · · · · · · · · · · · · · ·	Date Tested: 8/12/2020	
-			Note: Sample Washed	
90 + · · · · · · · · · · · · · · · · · ·	•••••••••••••••••••••••••••••••••••••••		Note: Sample Washed Sieve Size % Pase	sina Limits
80	•••••••••••••••••••••••••••••••••••••••		53.0mm	100
70			37.5mm	100
60			26.5mm 19.0mm	99 98
-			13.2mm	95
50 + · · · · · · · · · · · · · · · · · ·			9.5mm	90
40 - • • • • • • • • • • • • • • • • • •			6.7mm	83
30			4.75mm 2.36mm	74 57
20			1.18mm	43
-			600µm	33
10+			425µm	28
			300µm 150µm	25 20
75µm 150µm 300µm	425µm 600µm 1.18mm 2.36mm	4.75mm 6.7mm 9.5mm 13.2mm 19.0mm 26.5mm 37.5mm 53.0mm	75µm	20 16
, 	v tieve	4 . 26 13 6 6 . 53 7 13 6		
	Oleve			
omments				

N/A

aterial Tes	t Report			Report No: S	SYD2002758 Issue No: 1
ent: Liverpool	Plains Shire Council		NATA	Accredited for compliance with Testing	n ISO / IEC 17025 -
oject: 12534581		I	No: 679	on Approved Signatory: D.P I Date of Issue: 15/12/202 I SHALL NOT BE REPRODUCE	20
nple Details			Particle Si	ize Distribution	
D Sample No npled By cation ent Location / TP No. oth (m) I Description	SYD20-0515-10 Sampled by GHD Willow Tree Waste Management Facility Merriwa Road, Willow Tree TP21 1.0 - 1.7 Sandy CLAY with gravel light grey brown		Method: Drying by: Date Tested: Note: Sieve Size 37.5mm 26.5mm 19.0mm 13.2mm	Sample Washed % Passing 100 99 98 95	Limits
ner Test Results			9.5mm 6.7mm	92 87	
cription	S Method Result		4.75mm 2.36mm	84 81	
nple History paration ear Shrinkage (%) uld Length (mm) mbling ling cking uid Limit (%) hod stic Limit (%) sticity Index (%)	AS 1289.1.1 Oven-dried AS 1289.1.1 Dry Sieved AS 1289.3.4.1 Not Tested No No AS 1289.3.1.1 24 Four Point AS 1289.3.2.1 15 AS 1289.3.3.1 9		1.18mm 600µm 425µm 300µm 150µm 75µm	77 72 70 67 57 42	
			Chart		
			% Passing	under state of the	80mm 13mm 160mm 200mm 250mm
mments				und of the second secon	9.6mm 13.2mm

Comments

Material Tes	st Report			Report No:	SYD2002757 Issue No: 1
	I Plains Shire Council		NATA	Accredited for compliance wi Testing	th ISO / IEC 17025 -
Project: 1253458	31		No: 679	on Approved Signatory: D.P Date of Issue: 15/12/20 IT SHALL NOT BE REPRODUC	20
Sample Details			Particle S	ize Distribution	
GHD Sample No	SYD20-0515-11		Method:	AS 1289.3.6.1	
Sampled By Location Client Location	Sampled by GHD Willow Tree Waste Management Facility Merriwa Road, Willow Tree		Date Tested:		
BH / TP No. Depth (m) Soil Description	TP22 0.5 - 1.2 Sandy CLAY with gravel light red brown		Note: Sieve Size 37.5mm 26.5mm 19.0mm 13.2mm 9.5mm	Sample Washed % Passing 100 98 92 90 88	Limits
Other Test Resul	ts		6.7mm 4.75mm	86 85	
Description	Method Result	Limits	2.36mm	83	
Sample History Preparation Linear Shrinkage (%) Mould Length (mm) Crumbling Curling Cracking Liquid Limit (%) Method Plastic Limit (%) Plasticity Index (%) Date Tested	AS 1289.1.1 Oven-dried AS 1289.1.1 Dry Sieved AS 1289.3.4.1 Not Tested No AS 1289.3.1.1 31 Four Point AS 1289.3.2.1 17 AS 1289.3.3.1 14 11/12/2020		1.18mm 600μm 425μm 300μm 150μm 75μm	81 78 77 76 63 50	
			Chart		
			% Passing	Sterve	Bismine and a second and a se Second and a second and a s

Comments

Aaterial Test Report Issue Client: Liverpool Plains Shire Council Accedited for compliance with ISO / IEC 1 Project: 12534581 IVEX Accreditation Approved Signatory: D.P. Brooke No: 679 Date of Signatory: D.P. Brooke No: Sympled by GHD Date of Signatory: D.P. Brooke Occation Willow Tree Waste Management Facility Hill DocUMENT SHALL NOT BE REPRODUCED EXCEPT I Billon Sampled Dy G.S. 1.3 Distribution Clayey GRAVELLY SAND Other Test Results Method Result Limits Particle Size Distribution AS 1289.3.6.1 Date Tested: Market Signatory Date Tested: Note: Sample Washed			
Client: Liverpool Plains Shire Council Acceleration Acceleration </th <th>laterial Test</th> <th>Report</th> <th>Report No: SYD20027</th>	laterial Test	Report	Report No: SYD20027
Not: 679 Date of Issue: 15/12/2020 THIS DOCUMENT SHALL NOT BE REPRODUCED EXCEPT I ample Details HD Sample No SYD20-0515-12 ample By Sample Details Willow Tree Waste Management Facility H T PN o. H T PX o. optim (m) 0.5 - 1.3 optim (m) 0.5 - 1.3 oil Description Clayey GRAVELLY SAND		•	Accredited for compliance with ISO / IEC 17025 Testing
HD Sample No SYD20-0515-12 impled By Sampled by GHD cation Willow Tree Waste Management Facility ient Location Meriwa Road, Willow Tree 1 TP No. TP23 spth (m) 0.5 - 1.3 pit Description Clayey GRAVELLY SAND ther Test Results escription Method Result Limits ther Test Results escription Method Result Limits AS 1289.3.6.1 Date Tested: Note: Sample Washed Sieve Size % Passing 0 0 0 0 0 0 0 0 0 0 0 0 0	' roject: 12534581		No: 679
HD Sample No SYD20-0515-12 impled By Sampled by GHD cation Willow Tree Waste Management Facility ient Location Meriwa Road, Willow Tree 1 TP No. TP23 spth (m) 0.5 - 1.3 pil Description Clayey GRAVELLY SAND ther Test Results escription Method Result Limits ther Test Results escription Method Result Limits AS 1289.3.6.1 Date Tested: Note: Sample Washed Sieve Size % Passing 100 19.0mm 98 0.6.5mm 100 19.0mm 98 0.6.5mm 94 0.7.5mm 60 13.2mm 97 9.5mm 94 0.7.5mm 61 11.8mm 48 600µm 40 42.36µm 34 300µm 26 150µm 19 75µm 16	ample Details		
article Size DistributionAS 1289.3.6.1article Size DistributionDate Tested:Note:Sample WashedSieve Size% Passing0026.5mm10026.5mm10026.5mm10026.5mm10026.5mm10026.5mm10026.5mm10026.5mm10110110226.5mm103104104105105106105107106118mm107118mm108118mm11811911911011011	Impled By Incation ient Location I / TP No. Ipth (m)	Sampled by GHD Willow Tree Waste Management Facility Merriwa Road, Willow Tree TP23 0.5 - 1.3	
article Size Distribution AS 1289.3.6.1 % Passing Date Tested: Note: Sample Washed Sieve Size % Passing Lin 37.5mm 100 26.5mm 100 100 100 26.5mm 100 100 13.2mm 94 6.7mm 86 4.75mm 76 2.36mm 60 11.1mm 48 600µm 40 425µm 34 300µm 26 150µm 19 75µm 16		Mathad	Becult Limite
% Passing Date Tested: 10 0 </th <th></th> <th></th> <th></th>			
% Passing Date Tested: 0 <th></th> <th></th> <th></th>			
% Passing Date Tested: 00 0 </th <th></th> <th></th> <th></th>			
Date Fested: Date Fested: Note: Sample Washed Sieve Size % Passing Lin 37.5mm 100 26.5mm 100 19.0mm 98 13.2mm 97 9.5mm 94 6.7mm 86 4.75mm 76 2.36mm 60 1.18mm 48 600µm 40 425µm 34 300µm 26 150µm 19 75µm 16	article Size Distrib	ution	AS 1289.3.6.1
Note: Sample Washed Sieve Size % Passing Lin 37.5mm 100 60 0 0 0 70 0 0 0 0 60 0 0 0 0 60 0 0 0 0 60 0 0 0 0 60 0 0 0 0 90 5mm 94 0 0 13.2mm 97 9.5mm 94 6.7mm 86 4.75mm 76 2.36mm 60 1.18mm 48 600µm 40 425µm 34 300µm 26 150µm 19 75µm 16 16 16	% Passing		Date Tested:
$\begin{array}{c} \textbf{Sieve Size} & \textbf{% Passing Lin} \\ \textbf{37.5mm} & 100 \\ \textbf{26.5mm} & 100 \\ \textbf{19.0mm} & \textbf{98} \\ \textbf{13.2mm} & \textbf{97} \\ \textbf{9.5mm} & \textbf{94} \\ \textbf{6.7mm} & \textbf{86} \\ \textbf{4.75mm} & \textbf{76} \\ \textbf{2.36mm} & \textbf{60} \\ \textbf{1.18mm} & \textbf{48} \\ \textbf{600µm} & \textbf{40} \\ \textbf{425µm} & \textbf{34} \\ \textbf{300µm} & \textbf{26} \\ \textbf{150µm} & \textbf{19} \\ \textbf{75µm} & \textbf{16} \end{array}$	100		
	70		37.5mm 100 26.5mm 100 19.0mm 98 13.2mm 97 9.5mm 94 6.7mm 86 4.75mm 76 2.36mm 60 1.18mm 48 600µm 40
			300μm 26 150μm 19
			300μm 26 150μm 19
omments			300μm 26 150μm 19

N/A

aterial [.]	Test F	Report			R	eport No: SYI ا	D20027 Issue No
ent: Liv	erpool Plair	ns Shire Coun	ncil		Accredited Testing	for compliance with ISO	/ IEC 1702
oject: 125	534581				ATA Accreditation Approved No: 679 Date of Is THIS DOCUMENT SHALL NOT	sue: 15/12/2020	
nple Detai	ls						
Sample No pled By ation nt Location TP No. th (m) Description			GHD Waste Management F d, Willow Tree	acility			
er Test Re cription	esults		Method		Res	ult Lim	its
cription		tion	Method		AS 1289.3.6.1	ult Lim	its
cription		tion	Method	·····		ult Lim	its

Comments N/A

GHD

Level 3, GHD Tower 24 Honeysuckle Drive NEWCASTLE NSW 2300 T: 61 2 4979 9999 F: 61 2 9475 0725 E: ntlmail@ghd.com

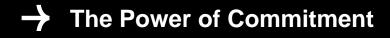
© GHD 2021

This document is and shall remain the property of GHD. The document may only be used for the purpose for which it was commissioned and in accordance with the Terms of Engagement for the commission. Unauthorised use of this document in any form whatsoever is prohibited.

12534581-42698-

22/https://projectsportal.ghd.com/sites/pp01_01/lpscwillowtreeregion/ProjectDocs/12534581-REP_Willow Tree geotechnical investigation.docx

Document Status


Revision	Author	Reviewer		Approved for Issue			
		Name	Signature	Name	Signature	Date	
0	S Mackenzie	Chris Nivison- Smith		J McPherson	l d -	23/12/2020	
1	S Mackenzie	Chris Nivison- Smith	And	J McPherson	Anifhend	- 02/02/2020	
			-				

www.ghd.com

ghd.com

